195 lines
6.7 KiB
Python
195 lines
6.7 KiB
Python
#!/usr/bin/env python3
|
||
"""
|
||
Nuclear Calculation Debug Analysis
|
||
|
||
The results showing 10^26 dominance of geometric over confinement forces
|
||
are so extreme they suggest calculation errors. Let's debug systematically.
|
||
|
||
Author: Andre Heinecke & AI Collaborators
|
||
Date: June 2025
|
||
"""
|
||
|
||
import numpy as np
|
||
|
||
def debug_nuclear_calculation():
|
||
"""Debug the nuclear force calculation step by step"""
|
||
|
||
print("NUCLEAR CALCULATION DEBUG ANALYSIS")
|
||
print("="*60)
|
||
print("Investigating why geometric/confinement ratio = 10^26")
|
||
print("This is too extreme to be physical - likely calculation error")
|
||
print()
|
||
|
||
# Constants
|
||
hbar = 1.054571817e-34 # J⋅s
|
||
c = 299792458 # m/s
|
||
eV_to_J = 1.602176634e-19
|
||
|
||
print("STEP 1: CHECK QUARK MASS CONVERSION")
|
||
print("-" * 40)
|
||
|
||
# Current quark masses from PDG
|
||
m_up_MeV = 2.16
|
||
m_down_MeV = 4.67
|
||
m_avg_MeV = (m_up_MeV + m_down_MeV) / 2
|
||
|
||
# Convert to kg
|
||
m_avg_kg = m_avg_MeV * 1e6 * eV_to_J / c**2
|
||
|
||
print(f"Average current quark mass: {m_avg_MeV:.2f} MeV/c²")
|
||
print(f"In kg: {m_avg_kg:.2e} kg")
|
||
print(f"Electron mass for comparison: {9.109e-31:.3e} kg")
|
||
print(f"Quark/electron mass ratio: {m_avg_kg/9.109e-31:.1f}")
|
||
print()
|
||
|
||
print("ISSUE 1: Current vs Constituent Quark Masses")
|
||
print("- Current masses (PDG): What appears in QCD Lagrangian")
|
||
print("- Constituent masses: Effective masses in hadrons (~300 MeV)")
|
||
print("- Geometric binding might depend on constituent masses!")
|
||
print()
|
||
|
||
# Try with constituent masses
|
||
m_constituent_MeV = 300 # Typical constituent mass
|
||
m_constituent_kg = m_constituent_MeV * 1e6 * eV_to_J / c**2
|
||
|
||
print(f"Constituent quark mass: {m_constituent_MeV} MeV/c²")
|
||
print(f"In kg: {m_constituent_kg:.2e} kg")
|
||
print(f"Current/Constituent ratio: {m_avg_kg/m_constituent_kg:.3f}")
|
||
print()
|
||
|
||
print("STEP 2: CHECK STRING TENSION CONVERSION")
|
||
print("-" * 40)
|
||
|
||
sigma_GeV2_fm = 0.18
|
||
# Convert GeV²/fm to N
|
||
GeV_to_J = 1e9 * eV_to_J
|
||
fm_to_m = 1e-15
|
||
|
||
sigma_N = sigma_GeV2_fm * (GeV_to_J**2) / fm_to_m
|
||
|
||
print(f"String tension: {sigma_GeV2_fm} GeV²/fm")
|
||
print(f"1 GeV = {GeV_to_J:.3e} J")
|
||
print(f"1 fm = {fm_to_m:.0e} m")
|
||
print(f"σ in SI units: {sigma_N:.2e} N")
|
||
print()
|
||
|
||
print("STEP 3: FORCE CALCULATIONS AT r = 1 fm")
|
||
print("-" * 40)
|
||
|
||
r_fm = 1.0
|
||
r_m = r_fm * 1e-15
|
||
|
||
# Geometric force with current mass
|
||
F_geom_current = hbar**2 / (m_avg_kg * r_m**3)
|
||
|
||
# Geometric force with constituent mass
|
||
F_geom_constituent = hbar**2 / (m_constituent_kg * r_m**3)
|
||
|
||
# Confinement force
|
||
F_conf = sigma_N * r_m
|
||
|
||
print(f"At r = {r_fm} fm = {r_m:.0e} m:")
|
||
print(f"F_geometric (current mass): {F_geom_current:.2e} N")
|
||
print(f"F_geometric (constituent mass): {F_geom_constituent:.2e} N")
|
||
print(f"F_confinement: {F_conf:.2e} N")
|
||
print()
|
||
|
||
ratio_current = F_geom_current / F_conf
|
||
ratio_constituent = F_geom_constituent / F_conf
|
||
|
||
print(f"Ratio (current mass): {ratio_current:.1e}")
|
||
print(f"Ratio (constituent mass): {ratio_constituent:.1e}")
|
||
print()
|
||
|
||
print("STEP 4: COMPARISON WITH KNOWN NUCLEAR FORCES")
|
||
print("-" * 40)
|
||
|
||
# Typical nuclear binding energy per nucleon
|
||
binding_per_nucleon_MeV = 8 # MeV (iron peak)
|
||
nuclear_radius_fm = 1.2 # fm (A^1/3 scaling)
|
||
|
||
# Estimate typical nuclear force
|
||
F_nuclear_typical = binding_per_nucleon_MeV * 1e6 * eV_to_J / (nuclear_radius_fm * 1e-15)
|
||
|
||
print(f"Typical nuclear binding: {binding_per_nucleon_MeV} MeV per nucleon")
|
||
print(f"Over distance ~{nuclear_radius_fm} fm")
|
||
print(f"Typical nuclear force: {F_nuclear_typical:.2e} N")
|
||
print()
|
||
|
||
print(f"Our geometric force (current): {F_geom_current:.2e} N")
|
||
print(f"vs typical nuclear force: {F_nuclear_typical:.2e} N")
|
||
print(f"Ratio: {F_geom_current/F_nuclear_typical:.1e}")
|
||
print()
|
||
|
||
if F_geom_current > 1000 * F_nuclear_typical:
|
||
print("⚠️ GEOMETRIC FORCE IS 1000x LARGER THAN TYPICAL NUCLEAR FORCES!")
|
||
print(" This suggests a fundamental error in the approach")
|
||
|
||
print("STEP 5: POTENTIAL ISSUES")
|
||
print("-" * 40)
|
||
|
||
print("1. MASS SCALE PROBLEM:")
|
||
print(" - Current quark masses may not be the relevant mass scale")
|
||
print(" - Constituent masses include binding energy effects")
|
||
print(" - QCD mass generation is non-perturbative")
|
||
print()
|
||
|
||
print("2. STRONG COUPLING BREAKDOWN:")
|
||
print(" - α_s ~ 1 at nuclear scales (non-perturbative)")
|
||
print(" - Geometric formula derived for weakly coupled systems")
|
||
print(" - QCD requires different theoretical treatment")
|
||
print()
|
||
|
||
print("3. MISSING QCD FACTORS:")
|
||
print(" - Color SU(3) factors")
|
||
print(" - Running coupling constant")
|
||
print(" - Non-Abelian gauge theory corrections")
|
||
print()
|
||
|
||
print("4. SCALE MISMATCH:")
|
||
print(" - Nuclear binding operates at ~MeV scale")
|
||
print(" - Our calculation gives forces equivalent to ~TeV energies")
|
||
print(" - Suggests wrong energy/length scale relationship")
|
||
print()
|
||
|
||
print("STEP 6: HONEST ASSESSMENT")
|
||
print("-" * 40)
|
||
|
||
print("LIKELY CONCLUSION:")
|
||
print("The geometric principle F = ℏ²/(mr³) cannot be naively extended")
|
||
print("from QED (electromagnetic) to QCD (strong force) because:")
|
||
print()
|
||
print("1. QCD is strongly coupled (α_s ~ 1) vs QED weakly coupled (α ~ 1/137)")
|
||
print("2. Non-Abelian gauge theory has qualitatively different physics")
|
||
print("3. Confinement is inherently non-perturbative")
|
||
print("4. Mass scales in QCD are dynamically generated")
|
||
print()
|
||
print("The geometric principle may be specific to:")
|
||
print("- QED systems (atoms, molecules)")
|
||
print("- Gravity (planets, stars)")
|
||
print("- Other weakly coupled systems")
|
||
print()
|
||
print("Nuclear physics likely requires its own theoretical framework")
|
||
print("that cannot be reduced to simple geometric arguments.")
|
||
|
||
return {
|
||
'geometric_current': F_geom_current,
|
||
'geometric_constituent': F_geom_constituent,
|
||
'confinement': F_conf,
|
||
'nuclear_typical': F_nuclear_typical,
|
||
'ratio_too_large': ratio_current > 1e20
|
||
}
|
||
|
||
if __name__ == "__main__":
|
||
result = debug_nuclear_calculation()
|
||
|
||
print("\n" + "="*60)
|
||
print("DEBUG CONCLUSION:")
|
||
if result['ratio_too_large']:
|
||
print("❌ Calculation error confirmed!")
|
||
print(" Geometric principle likely not applicable to QCD")
|
||
print(" Need to acknowledge limitations honestly")
|
||
else:
|
||
print("✓ Calculation seems reasonable")
|
||
print(" Proceed with nuclear analysis")
|