389 lines
13 KiB
Python
389 lines
13 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Hadron Structure Testing with s ≈ 0.17 Angular Momentum Constraint
|
|
|
|
Tests the discovered s ≈ 0.17 constraint (L ≈ 0.17ℏ for quarks) against:
|
|
1. Known hadron magnetic moments
|
|
2. Spin-orbit coupling in nucleons
|
|
3. Regge trajectories (mass vs angular momentum)
|
|
4. Multi-quark systems (mesons, baryons)
|
|
5. Bag model predictions
|
|
6. Experimental form factors
|
|
|
|
Author: Andre Heinecke & AI Collaborators
|
|
Date: June 2025
|
|
License: CC BY-SA 4.0
|
|
Repository: https://git.esus.name/esus/spin_paper/
|
|
"""
|
|
|
|
import numpy as np
|
|
import sys
|
|
|
|
try:
|
|
import scipy.constants as const
|
|
from scipy.constants import physical_constants
|
|
SCIPY_AVAILABLE = True
|
|
except ImportError:
|
|
SCIPY_AVAILABLE = False
|
|
|
|
# ==============================================================================
|
|
# CONSTANTS AND PARAMETERS
|
|
# ==============================================================================
|
|
|
|
def get_constants():
|
|
"""Get fundamental constants"""
|
|
if SCIPY_AVAILABLE:
|
|
return {
|
|
'hbar': const.hbar,
|
|
'c': const.c,
|
|
'e': const.e,
|
|
'me': const.m_e,
|
|
'mp': const.m_p,
|
|
'mn': const.m_n,
|
|
}
|
|
else:
|
|
return {
|
|
'hbar': 1.054571817e-34,
|
|
'c': 299792458,
|
|
'e': 1.602176634e-19,
|
|
'me': 9.1093837015e-31,
|
|
'mp': 1.67262192369e-27,
|
|
'mn': 1.67492749804e-27,
|
|
}
|
|
|
|
def get_hadron_data():
|
|
"""Known hadron properties for testing"""
|
|
|
|
# Convert units
|
|
if SCIPY_AVAILABLE:
|
|
mev_to_kg = const.e * 1e6 / const.c**2
|
|
mu_n = physical_constants['nuclear magneton'][0] # Nuclear magneton
|
|
else:
|
|
mev_to_kg = 1.602176634e-19 * 1e6 / (299792458**2)
|
|
mu_n = 5.0507837461e-27 # J/T, nuclear magneton
|
|
|
|
hadrons = {
|
|
# Baryons (qqq systems)
|
|
'proton': {
|
|
'mass': 938.3 * mev_to_kg,
|
|
'charge': 1,
|
|
'spin': 0.5,
|
|
'magnetic_moment': 2.7928 * mu_n, # Experimental value
|
|
'quarks': ['u', 'u', 'd'],
|
|
'angular_momentum': 0.5, # Total J
|
|
},
|
|
'neutron': {
|
|
'mass': 939.6 * mev_to_kg,
|
|
'charge': 0,
|
|
'spin': 0.5,
|
|
'magnetic_moment': -1.9130 * mu_n,
|
|
'quarks': ['u', 'd', 'd'],
|
|
'angular_momentum': 0.5,
|
|
},
|
|
'delta_plus': {
|
|
'mass': 1232 * mev_to_kg,
|
|
'charge': 1,
|
|
'spin': 1.5,
|
|
'magnetic_moment': None, # To be calculated
|
|
'quarks': ['u', 'u', 'd'],
|
|
'angular_momentum': 1.5,
|
|
},
|
|
|
|
# Mesons (qq̄ systems)
|
|
'pion_charged': {
|
|
'mass': 139.6 * mev_to_kg,
|
|
'charge': 1,
|
|
'spin': 0,
|
|
'magnetic_moment': None,
|
|
'quarks': ['u', 'd̄'], # or d, ū
|
|
'angular_momentum': 0,
|
|
},
|
|
'rho_meson': {
|
|
'mass': 775.3 * mev_to_kg,
|
|
'charge': 1,
|
|
'spin': 1,
|
|
'magnetic_moment': None,
|
|
'quarks': ['u', 'd̄'],
|
|
'angular_momentum': 1,
|
|
},
|
|
|
|
# Heavy quarkonia for testing
|
|
'j_psi': {
|
|
'mass': 3097 * mev_to_kg,
|
|
'charge': 0,
|
|
'spin': 1,
|
|
'magnetic_moment': None,
|
|
'quarks': ['c', 'c̄'],
|
|
'angular_momentum': 1,
|
|
}
|
|
}
|
|
|
|
return hadrons, mu_n
|
|
|
|
# ==============================================================================
|
|
# ANGULAR MOMENTUM ANALYSIS
|
|
# ==============================================================================
|
|
|
|
class HadronAngularMomentumAnalyzer:
|
|
"""Test s ≈ 0.17 constraint against hadron physics"""
|
|
|
|
def __init__(self):
|
|
self.constants = get_constants()
|
|
self.hadrons, self.mu_n = get_hadron_data()
|
|
self.s_quark = 0.17 # Discovered constraint
|
|
self.s_electron = 0.5 # Atomic reference
|
|
|
|
def calculate_quark_magnetic_moment(self, quark_type, s_factor):
|
|
"""Calculate magnetic moment with modified angular momentum"""
|
|
|
|
# Quark charges (in units of e)
|
|
quark_charges = {
|
|
'u': 2.0/3.0,
|
|
'd': -1.0/3.0,
|
|
'c': 2.0/3.0,
|
|
's': -1.0/3.0,
|
|
'b': -1.0/3.0,
|
|
't': 2.0/3.0
|
|
}
|
|
|
|
# Constituent quark masses (effective masses in hadrons)
|
|
if SCIPY_AVAILABLE:
|
|
mev_to_kg = const.e * 1e6 / const.c**2
|
|
else:
|
|
mev_to_kg = 1.602176634e-19 * 1e6 / (299792458**2)
|
|
|
|
quark_masses = {
|
|
'u': 350 * mev_to_kg,
|
|
'd': 350 * mev_to_kg,
|
|
'c': 1500 * mev_to_kg,
|
|
's': 500 * mev_to_kg,
|
|
'b': 4800 * mev_to_kg,
|
|
't': 173000 * mev_to_kg
|
|
}
|
|
|
|
q = quark_charges[quark_type] * self.constants['e']
|
|
m = quark_masses[quark_type]
|
|
|
|
# Magnetic moment: μ = q*L/(2m) where L = s*ℏ
|
|
mu = q * s_factor * self.constants['hbar'] / (2 * m)
|
|
|
|
return mu, q, m
|
|
|
|
def test_nucleon_magnetic_moments(self):
|
|
"""Test if s ≈ 0.17 can explain proton/neutron magnetic moments"""
|
|
|
|
print("NUCLEON MAGNETIC MOMENT ANALYSIS")
|
|
print("="*50)
|
|
print("Testing whether s ≈ 0.17 constraint explains experimental values")
|
|
print()
|
|
|
|
for nucleon in ['proton', 'neutron']:
|
|
data = self.hadrons[nucleon]
|
|
quarks = data['quarks']
|
|
mu_exp = data['magnetic_moment']
|
|
|
|
print(f"{nucleon.upper()} ({' '.join(quarks)}):")
|
|
print(f" Experimental μ = {mu_exp/self.mu_n:.3f} μ_N")
|
|
|
|
# Calculate with s ≈ 0.17
|
|
mu_total_s017 = 0
|
|
for quark in quarks:
|
|
quark_clean = quark.replace('̄', '') # Remove antiparticle bar
|
|
sign = -1 if '̄' in quark else 1
|
|
mu_q, q, m = self.calculate_quark_magnetic_moment(quark_clean, self.s_quark)
|
|
mu_total_s017 += sign * mu_q
|
|
|
|
print(f" Predicted (s=0.17): {mu_total_s017/self.mu_n:.3f} μ_N")
|
|
|
|
# Calculate with standard s = 0.5 for comparison
|
|
mu_total_s05 = 0
|
|
for quark in quarks:
|
|
quark_clean = quark.replace('̄', '')
|
|
sign = -1 if '̄' in quark else 1
|
|
mu_q, q, m = self.calculate_quark_magnetic_moment(quark_clean, self.s_electron)
|
|
mu_total_s05 += sign * mu_q
|
|
|
|
print(f" Standard (s=0.5): {mu_total_s05/self.mu_n:.3f} μ_N")
|
|
|
|
# Agreement ratios
|
|
ratio_s017 = (mu_total_s017 / mu_exp) if mu_exp != 0 else 0
|
|
ratio_s05 = (mu_total_s05 / mu_exp) if mu_exp != 0 else 0
|
|
|
|
print(f" Agreement s=0.17: {ratio_s017:.3f}")
|
|
print(f" Agreement s=0.5: {ratio_s05:.3f}")
|
|
print()
|
|
|
|
return mu_total_s017, mu_total_s05
|
|
|
|
def test_regge_trajectories(self):
|
|
"""Test angular momentum vs mass relationships"""
|
|
|
|
print("REGGE TRAJECTORY ANALYSIS")
|
|
print("="*40)
|
|
print("Testing mass vs angular momentum relationships")
|
|
print()
|
|
|
|
# Collect hadrons by angular momentum
|
|
j_values = {}
|
|
for name, data in self.hadrons.items():
|
|
j = data['angular_momentum']
|
|
mass = data['mass']
|
|
if j not in j_values:
|
|
j_values[j] = []
|
|
j_values[j].append((name, mass))
|
|
|
|
print(f"{'J':<5} {'Hadron':<15} {'Mass (MeV)':<12} {'s_eff implied':<12}")
|
|
print("-" * 50)
|
|
|
|
for j in sorted(j_values.keys()):
|
|
for name, mass in j_values[j]:
|
|
mass_mev = mass * self.constants['c']**2 / self.constants['e'] / 1e6
|
|
|
|
# If this were orbital angular momentum: L = J*ℏ = s_eff*ℏ
|
|
s_eff = j
|
|
|
|
print(f"{j:<5.1f} {name:<15} {mass_mev:<12.1f} {s_eff:<12.1f}")
|
|
|
|
print()
|
|
print("Note: If quarks follow s ≈ 0.17, total hadron J should reflect")
|
|
print(" combinations of individual quark angular momenta")
|
|
|
|
def test_bag_model_connection(self):
|
|
"""Test connection to MIT bag model"""
|
|
|
|
print("BAG MODEL CONNECTION")
|
|
print("="*30)
|
|
print("Testing if s ≈ 0.17 is consistent with bag confinement")
|
|
print()
|
|
|
|
# Typical bag parameters
|
|
bag_constant = 145e6 * self.constants['e'] # 145 MeV in Joules
|
|
bag_radius_proton = 0.8e-15 # 0.8 fm
|
|
|
|
# In bag model: quark angular momentum from L = sqrt(j(j+1))*ℏ
|
|
# For j = 1/2: L = sqrt(3/4)*ℏ = 0.866*ℏ
|
|
# Our s ≈ 0.17 gives L = 0.17*ℏ
|
|
|
|
j_bag_standard = 0.5 # Quark spin
|
|
L_bag_standard = np.sqrt(j_bag_standard * (j_bag_standard + 1)) * self.constants['hbar']
|
|
L_our_model = self.s_quark * self.constants['hbar']
|
|
|
|
print(f"Bag model (j=1/2): L = {L_bag_standard/self.constants['hbar']:.3f}ℏ")
|
|
print(f"Our model: L = {L_our_model/self.constants['hbar']:.3f}ℏ")
|
|
print(f"Ratio: {L_our_model/L_bag_standard:.3f}")
|
|
print()
|
|
|
|
# Energy scale comparison
|
|
E_bag = bag_constant
|
|
E_geometric = self.constants['hbar']**2 * self.s_quark**2 / (
|
|
350e6 * self.constants['e'] / self.constants['c']**2 * bag_radius_proton**3
|
|
)
|
|
|
|
print(f"Bag constant: {E_bag/self.constants['e']/1e6:.0f} MeV")
|
|
print(f"Geometric energy: {E_geometric/self.constants['e']/1e6:.0f} MeV")
|
|
print(f"Scale ratio: {E_geometric/E_bag:.3f}")
|
|
|
|
def test_multi_quark_systems(self):
|
|
"""Test how s ≈ 0.17 applies to different quark combinations"""
|
|
|
|
print("\nMULTI-QUARK SYSTEM ANALYSIS")
|
|
print("="*40)
|
|
print("Testing s ≈ 0.17 in mesons vs baryons")
|
|
print()
|
|
|
|
print(f"{'System':<15} {'Quarks':<10} {'J_total':<8} {'s_individual':<12} {'Configuration'}")
|
|
print("-" * 65)
|
|
|
|
# Analyze different systems
|
|
systems = [
|
|
('Pion', 'qq̄', 0, 'Antiparallel spins'),
|
|
('Rho meson', 'qq̄', 1, 'Parallel spins + L=0'),
|
|
('Proton', 'qqq', 0.5, 'Two parallel + one anti'),
|
|
('Delta', 'qqq', 1.5, 'All parallel spins'),
|
|
]
|
|
|
|
for name, quarks, j_total, config in systems:
|
|
# For our model: each quark contributes ≈ 0.17ℏ angular momentum
|
|
n_quarks = len(quarks.replace('̄', ''))
|
|
s_individual = self.s_quark
|
|
|
|
print(f"{name:<15} {quarks:<10} {j_total:<8.1f} {s_individual:<12.2f} {config}")
|
|
|
|
print()
|
|
print("Key insight: If individual quarks have L ≈ 0.17ℏ,")
|
|
print("total hadron angular momentum comes from vector combination")
|
|
print("of reduced individual contributions plus relative motion")
|
|
|
|
def experimental_predictions(self):
|
|
"""Generate testable predictions from s ≈ 0.17 constraint"""
|
|
|
|
print("\nEXPERIMENTAL PREDICTIONS")
|
|
print("="*35)
|
|
print("Testable consequences of L_quark ≈ 0.17ℏ constraint")
|
|
print()
|
|
|
|
print("1. MAGNETIC MOMENT RATIOS:")
|
|
print(" μ_p/μ_n should scale with s ≈ 0.17 rather than s = 0.5")
|
|
print()
|
|
|
|
print("2. FORM FACTOR SLOPES:")
|
|
print(" Charge/magnetic form factors reflect reduced angular momentum")
|
|
print(" Slope parameters should differ from point-particle predictions")
|
|
print()
|
|
|
|
print("3. SPIN-ORBIT COUPLING:")
|
|
print(" Hyperfine structure in hadron spectra reflects L ≈ 0.17ℏ")
|
|
print(" Different from atomic physics (L = 0.5ℏ)")
|
|
print()
|
|
|
|
print("4. DEEP INELASTIC SCATTERING:")
|
|
print(" Parton angular momentum distributions affected")
|
|
print(" Total quark contribution to nucleon spin modified")
|
|
print()
|
|
|
|
print("5. LATTICE QCD TESTS:")
|
|
print(" Direct measurement of quark angular momentum in simulations")
|
|
print(" Should find L ≈ 0.17ℏ for individual quarks")
|
|
|
|
# ==============================================================================
|
|
# MAIN ANALYSIS
|
|
# ==============================================================================
|
|
|
|
def main():
|
|
"""Run hadron structure analysis with s ≈ 0.17 constraint"""
|
|
|
|
print("HADRON STRUCTURE ANALYSIS: s ≈ 0.17 ANGULAR MOMENTUM CONSTRAINT")
|
|
print("="*75)
|
|
print("Testing discovered quark constraint L ≈ 0.17ℏ against hadron physics")
|
|
print()
|
|
|
|
analyzer = HadronAngularMomentumAnalyzer()
|
|
|
|
# Test magnetic moments
|
|
analyzer.test_nucleon_magnetic_moments()
|
|
|
|
# Test Regge trajectories
|
|
analyzer.test_regge_trajectories()
|
|
|
|
# Test bag model connection
|
|
analyzer.test_bag_model_connection()
|
|
|
|
# Test multi-quark systems
|
|
analyzer.test_multi_quark_systems()
|
|
|
|
# Generate experimental predictions
|
|
analyzer.experimental_predictions()
|
|
|
|
print(f"\n" + "="*75)
|
|
print("ANALYSIS COMPLETE")
|
|
print("="*75)
|
|
|
|
if __name__ == "__main__":
|
|
if len(sys.argv) > 1 and sys.argv[1] in ['-h', '--help']:
|
|
print("Usage: python hadron_structure_s017_test.py")
|
|
print(" Tests s ≈ 0.17 angular momentum constraint against hadron physics")
|
|
print(" Generates experimental predictions for verification")
|
|
sys.exit(0)
|
|
|
|
main()
|