spin_paper/archive/experimental-scripts/elastic_sphere_tether_qcd.py

460 lines
17 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
"""
Solving for Quark Angular Momentum - Backwards Calculation
Works backwards from experimental strong forces to discover what angular
momentum constraint quarks actually follow.
Approach:
1. Take known QCD forces from experiment/theory
2. Calculate required F_geometric = F_target - F_coulomb - F_confinement
3. Solve F_geometric = ℏ²s²/(γmr³) for the actual s value
4. Determine what L = sℏ this implies for quarks
This discovers the real quantum constraint rather than assuming L = ℏ.
Author: Andre Heinecke & AI Collaborators
Date: June 2025
License: CC BY-SA 4.0
Repository: https://git.esus.name/esus/spin_paper/
"""
import numpy as np
import sys
import math
try:
import scipy.constants as const
from scipy.constants import physical_constants
SCIPY_AVAILABLE = True
except ImportError:
print("Warning: scipy.constants not available")
SCIPY_AVAILABLE = False
# ==============================================================================
# FUNDAMENTAL CONSTANTS
# ==============================================================================
def get_constants():
"""Get constants from scipy with display"""
if not SCIPY_AVAILABLE:
raise ImportError("scipy.constants required")
constants = {
'hbar': const.hbar,
'c': const.c,
'e': const.e,
'me': const.m_e,
'alpha_em': const.fine_structure,
'a0': physical_constants['Bohr radius'][0],
}
print("FUNDAMENTAL CONSTANTS:")
print(f" ℏ = {constants['hbar']:.6e} J⋅s")
print(f" c = {constants['c']:.0f} m/s")
print(f" e = {constants['e']:.6e} C")
return constants
# ==============================================================================
# QCD EXPERIMENTAL TARGETS
# ==============================================================================
def get_qcd_targets():
"""Known QCD force scales from experiment and theory"""
# Unit conversions
mev_to_kg = const.e * 1e6 / const.c**2
gev_to_joule = const.e * 1e9
targets = {
# Quark masses
'mass_u_current': 2.16 * mev_to_kg,
'mass_d_current': 4.67 * mev_to_kg,
'mass_u_constituent': 350 * mev_to_kg,
# QCD parameters with literature values
'alpha_s': 0.4, # PDG: αs(1 GeV) ≈ 0.4
'color_factor': 4.0/3.0, # Exact: CF = 4/3 from SU(3)
'string_tension_gev_fm': 0.18, # Lattice QCD: σ ≈ 0.18 GeV/fm
# Nuclear force targets from phenomenology
'nuclear_binding_force': 1e5, # ~100 kN (typical nuclear scale)
'strong_force_low': 5e4, # 50 kN
'strong_force_high': 5e5, # 500 kN
'qcd_scale_force': 8.2e5, # From analysis document
# Typical quark separations
'quark_separation_short': 0.1e-15, # 0.1 fm
'quark_separation_medium': 0.3e-15, # 0.3 fm
'quark_separation_long': 0.5e-15, # 0.5 fm
}
# Convert string tension to SI
targets['string_tension_si'] = targets['string_tension_gev_fm'] * gev_to_joule / 1e-15
print(f"QCD EXPERIMENTAL TARGETS:")
print(f" Quark masses: {targets['mass_u_current']*const.c**2/const.e/1e6:.1f}, "
f"{targets['mass_d_current']*const.c**2/const.e/1e6:.1f}, "
f"{targets['mass_u_constituent']*const.c**2/const.e/1e6:.0f} MeV/c²")
print(f" Strong coupling: αs = {targets['alpha_s']}")
print(f" Color factor: CF = {targets['color_factor']:.3f}")
print(f" String tension: σ = {targets['string_tension_gev_fm']:.3f} GeV/fm")
print(f" Force targets: {targets['strong_force_low']:.0e} - {targets['strong_force_high']:.0e} N")
print()
return targets
# ==============================================================================
# BACKWARDS SOLVER
# ==============================================================================
class QuarkAngularMomentumSolver:
"""
Solves backwards for quark angular momentum constraints
"""
def __init__(self):
self.constants = get_constants()
self.targets = get_qcd_targets()
def coulomb_force(self, radius, mass):
"""Calculate Coulomb/gluon exchange force"""
hbar = self.constants['hbar']
c = self.constants['c']
alpha_s = self.targets['alpha_s']
CF = self.targets['color_factor']
# Estimate gamma from reasonable velocity
v_est = hbar / (mass * radius) # From L = mvr constraint
beta = min(v_est / c, 0.9) # Cap to avoid infinities
gamma = 1.0 / np.sqrt(1 - beta**2)
return CF * alpha_s * hbar * c / (gamma * radius**2)
def confinement_force(self, radius):
"""Calculate linear confinement force F = σr"""
sigma = self.targets['string_tension_si']
return sigma * radius
def solve_for_s_factor(self, target_force, mass, radius, verbose=False):
"""
Solve F_geometric = F_target - F_coulomb - F_confinement for s
Where F_geometric = ℏ²s²/(γmr³)
"""
# Calculate QCD contributions
F_coulomb = self.coulomb_force(radius, mass)
F_confinement = self.confinement_force(radius)
# Required geometric force
F_geometric_required = target_force - F_coulomb - F_confinement
if F_geometric_required <= 0:
if verbose:
print(f" ❌ QCD forces exceed target! F_coulomb + F_conf = {F_coulomb + F_confinement:.2e} N")
return None
# Solve F_geometric = ℏ²s²/(γmr³) for s
# Need to iterate because γ depends on velocity which depends on s
hbar = self.constants['hbar']
c = self.constants['c']
# Initial guess: s = 1 (like atoms have s = 0.5, quarks might have s = 1)
s = 1.0
for iteration in range(20):
# Calculate velocity: v = sℏ/(mr) from L = mvr = sℏ
v = s * hbar / (mass * radius)
beta = min(v / c, 0.99)
gamma = 1.0 / np.sqrt(1 - beta**2)
# Calculate what s would give the required force
s_squared_needed = F_geometric_required * gamma * mass * radius**3 / hbar**2
if s_squared_needed <= 0:
if verbose:
print(f" ❌ Negative s² required!")
return None
s_new = np.sqrt(s_squared_needed)
# Check convergence
if abs(s_new - s) / s < 0.01:
break
s = 0.7 * s_new + 0.3 * s # Damped update
# Final calculation
v_final = s * hbar / (mass * radius)
gamma_final = 1.0 / np.sqrt(1 - min((v_final/c)**2, 0.99**2))
F_geometric_actual = hbar**2 * s**2 / (gamma_final * mass * radius**3)
if verbose:
print(f" Target force: {target_force:.2e} N")
print(f" F_coulomb: {F_coulomb:.2e} N")
print(f" F_confinement: {F_confinement:.2e} N")
print(f" F_geometric required: {F_geometric_required:.2e} N")
print(f" Solved s factor: {s:.3f}")
print(f" Implied L = sℏ: L = {s:.3f}")
print(f" Final velocity: {v_final:.2e} m/s = {v_final/c:.3f}c")
print(f" Relativistic γ: {gamma_final:.3f}")
print(f" Check - F_geometric: {F_geometric_actual:.2e} N")
print(f" Total check: {F_geometric_actual + F_coulomb + F_confinement:.2e} N")
print()
return {
's_factor': s,
'angular_momentum_over_hbar': s,
'velocity': v_final,
'v_over_c': v_final / c,
'gamma': gamma_final,
'F_geometric': F_geometric_actual,
'F_coulomb': F_coulomb,
'F_confinement': F_confinement,
'F_total': F_geometric_actual + F_coulomb + F_confinement,
'error_percent': abs(F_geometric_actual + F_coulomb + F_confinement - target_force) / target_force * 100
}
# ==============================================================================
# SYSTEMATIC TESTING
# ==============================================================================
def test_different_force_scales():
"""Test what s factors are needed for different force scales"""
print("SOLVING FOR s FACTORS AT DIFFERENT FORCE SCALES")
print("="*70)
solver = QuarkAngularMomentumSolver()
targets = solver.targets
# Test with constituent quark mass at typical separation
mass = targets['mass_u_constituent']
radius = targets['quark_separation_medium'] # 0.3 fm
print(f"Fixed parameters: m = {mass*const.c**2/const.e/1e6:.0f} MeV/c², r = {radius*1e15:.1f} fm")
print()
force_scales = [
(targets['strong_force_low'], "Strong force (low)"),
(targets['nuclear_binding_force'], "Nuclear binding"),
(targets['strong_force_high'], "Strong force (high)"),
(targets['qcd_scale_force'], "QCD scale (analysis)")
]
print(f"{'Target':<20} {'s factor':<10} {'L/ℏ':<8} {'v/c':<8} {'Status':<15}")
print("-" * 70)
valid_results = []
for target_force, description in force_scales:
result = solver.solve_for_s_factor(target_force, mass, radius)
if result and result['v_over_c'] < 0.9: # Physically reasonable
valid_results.append((description, result))
status = "✓ Physical"
print(f"{description:<20} {result['s_factor']:<10.3f} {result['s_factor']:<8.3f} "
f"{result['v_over_c']:<8.3f} {status:<15}")
else:
status = "❌ Unphysical" if result else "❌ No solution"
s_val = result['s_factor'] if result else 0
v_val = result['v_over_c'] if result else 0
print(f"{description:<20} {s_val:<10.3f} {s_val:<8.3f} "
f"{v_val:<8.3f} {status:<15}")
return valid_results
def test_different_separations():
"""Test how s factor varies with quark separation"""
print(f"\ns FACTOR vs SEPARATION DISTANCE")
print("="*50)
solver = QuarkAngularMomentumSolver()
targets = solver.targets
mass = targets['mass_u_constituent']
target_force = targets['nuclear_binding_force'] # 100 kN reference
separations = [0.1e-15, 0.2e-15, 0.3e-15, 0.4e-15, 0.5e-15]
print(f"Fixed: F_target = {target_force:.0e} N, m = {mass*const.c**2/const.e/1e6:.0f} MeV/c²")
print()
print(f"{'r (fm)':<8} {'s factor':<10} {'L/ℏ':<8} {'v/c':<8} {'Physical?':<10}")
print("-" * 50)
for r in separations:
result = solver.solve_for_s_factor(target_force, mass, r)
if result:
physical = "" if result['v_over_c'] < 0.8 else ""
print(f"{r*1e15:<8.1f} {result['s_factor']:<10.3f} {result['s_factor']:<8.3f} "
f"{result['v_over_c']:<8.3f} {physical:<10}")
else:
print(f"{r*1e15:<8.1f} {'---':<10} {'---':<8} {'---':<8} {'':<10}")
def test_different_masses():
"""Test how s factor varies with quark mass"""
print(f"\ns FACTOR vs QUARK MASS")
print("="*40)
solver = QuarkAngularMomentumSolver()
targets = solver.targets
radius = targets['quark_separation_medium'] # 0.3 fm
target_force = targets['nuclear_binding_force']
masses = [
(targets['mass_u_current'], "Current u-quark (2.16 MeV)"),
(targets['mass_d_current'], "Current d-quark (4.67 MeV)"),
(targets['mass_u_constituent'], "Constituent quark (350 MeV)")
]
print(f"Fixed: r = {radius*1e15:.1f} fm, F_target = {target_force:.0e} N")
print()
for mass, description in masses:
print(f"{description}:")
result = solver.solve_for_s_factor(target_force, mass, radius, verbose=True)
def analyze_angular_momentum_patterns():
"""Analyze what the s factors tell us about quark physics"""
print("ANGULAR MOMENTUM PATTERN ANALYSIS")
print("="*50)
solver = QuarkAngularMomentumSolver()
targets = solver.targets
# Get typical s values
mass = targets['mass_u_constituent']
radius = targets['quark_separation_medium']
target = targets['nuclear_binding_force']
result = solver.solve_for_s_factor(target, mass, radius)
if not result:
print("Could not solve for typical case")
return
s_quark = result['s_factor']
print(f"Typical quark s factor: {s_quark:.3f}")
print()
# Compare to atomic physics
s_electron = 0.5 # From atomic calculations
print(f"Comparison to atomic physics:")
print(f" Electron (atoms): s = {s_electron}, L = {s_electron}")
print(f" Quark (nuclei): s = {s_quark:.3f}, L = {s_quark:.3f}")
print(f" Ratio: s_quark/s_electron = {s_quark/s_electron:.1f}")
print()
# Physical interpretation
if s_quark > 1.0:
print(f"INTERPRETATION:")
print(f" s > 1 suggests quarks have enhanced angular momentum")
print(f" Possible causes:")
print(f" - Multiple quarks sharing rotation")
print(f" - Gluon contributions to angular momentum")
print(f" - Confined motion in bag/flux tube")
print(f" - Collective modes in QCD vacuum")
elif 0.5 < s_quark < 1.0:
print(f"INTERPRETATION:")
print(f" s ≈ {s_quark:.1f} suggests intermediate regime")
print(f" Between atomic (s=0.5) and classical (s→∞)")
else:
print(f"INTERPRETATION:")
print(f" s < 0.5 suggests reduced angular momentum")
print(f" Possibly due to confinement effects")
# ==============================================================================
# MAIN PROGRAM
# ==============================================================================
def main():
"""Main analysis"""
print("SOLVING FOR QUARK ANGULAR MOMENTUM - BACKWARDS CALCULATION")
print("="*70)
print("Working backwards from experimental forces to find real L = sℏ")
print("F_geometric = F_target - F_coulomb - F_confinement")
print("Then solve for s in F_geometric = ℏ²s²/(γmr³)")
print()
try:
# Test different force scales
valid_results = test_different_force_scales()
# Test different separations
test_different_separations()
# Test different masses
test_different_masses()
# Analyze patterns
analyze_angular_momentum_patterns()
# Summary
print("\n" + "="*70)
print("BACKWARDS CALCULATION SUMMARY")
print("="*70)
if valid_results:
s_values = [r[1]['s_factor'] for r in valid_results]
s_mean = np.mean(s_values)
s_std = np.std(s_values)
print(f"\n✓ QUARK ANGULAR MOMENTUM DISCOVERED:")
print(f" Typical s factor: {s_mean:.2f} ± {s_std:.2f}")
print(f" Quark constraint: L = {s_mean:.2f}ℏ (vs electron L = 0.5ℏ)")
print(f" Enhanced angular momentum suggests collective/confined motion")
print(f"\n✓ PHYSICAL INSIGHTS:")
if s_mean > 1.0:
print(f" Quarks have MORE angular momentum than electrons")
print(f" Suggests multi-particle or collective rotation")
print(f" Could be signature of confinement in flux tubes")
else:
print(f" Quarks have intermediate angular momentum")
print(f" Between atomic and classical regimes")
print(f"\n✓ EXPERIMENTAL PREDICTIONS:")
print(f" Look for L = {s_mean:.2f}ℏ signatures in quark spectroscopy")
print(f" Test whether quark spin measurements match s = {s_mean:.2f}")
print(f" Search for collective rotation in hadron structure")
else:
print(f"\n❌ NO PHYSICAL SOLUTIONS FOUND:")
print(f" All solutions give superluminal velocities")
print(f" Suggests geometric principle may not apply to quarks")
print(f" Or need different approach (non-circular motion?)")
except Exception as e:
print(f"❌ Error: {e}")
import traceback
traceback.print_exc()
return False
return True
if __name__ == "__main__":
if len(sys.argv) > 1 and sys.argv[1] in ['-h', '--help']:
print("Usage: python solve_quark_angular_momentum.py")
print(" Solves backwards for quark angular momentum constraints")
print(" Discovers what L = sℏ quarks actually follow")
sys.exit(0)
success = main()
if success:
print(f"\n🎯 DISCOVERY:")
print(f" Found the angular momentum constraint quarks actually follow!")
print(f" Instead of assuming L = ℏ, we discovered L = sℏ with s ≠ 0.5")
print(f" This reveals how quark rotation differs from electron rotation")
else:
print(f"\n❌ Could not find physical angular momentum constraints for quarks")