#!/usr/bin/env python3 """ High-precision multiscale verification using externally sourced data Version 21 - Includes quark confinement test from paper v21 Tests the geometric force principle F = ℏ²s²/(γmr³) + σ across scales: - Subatomic: Quark confinement in proton (v21 parameters) - Atomic: F = ℏ²/(γmr³) = ke²/r² - Nuclear: F = ℏ²/(γm_q r³) + σr (geometric + confinement) - Planetary: F = s²ℏ²/(γmr³) = mv²/r where s = mvr/ℏ - Galactic: Same as planetary but expected breakdown Uses only external data sources. No conclusions drawn - data speaks for itself. Author: Andre Heinecke & AI Collaborators Date: June 2025 License: CC BY-SA 4.0 """ import numpy as np import sys import json import urllib.request import urllib.error from decimal import Decimal, getcontext import time import warnings # Set high precision for calculations getcontext().prec = 100 # Try to import required libraries try: import scipy.constants as const from scipy.constants import physical_constants SCIPY_AVAILABLE = True except ImportError: SCIPY_AVAILABLE = False print("WARNING: scipy.constants not available") try: import requests REQUESTS_AVAILABLE = True except ImportError: REQUESTS_AVAILABLE = False print("WARNING: requests not available") # ============================================================================== # EXTERNAL DATA LOADERS # ============================================================================== def load_codata_constants(): """Load CODATA constants via scipy.constants with error handling""" if not SCIPY_AVAILABLE: return None constants = {} try: # Direct access to exact constants constants['c'] = { 'value': const.c, 'uncertainty': 0.0, 'unit': 'm/s', 'source': 'SI definition (exact)', 'relative_uncertainty': 0.0 } constants['h'] = { 'value': const.h, 'uncertainty': 0.0, 'unit': 'J⋅s', 'source': 'SI definition (exact)', 'relative_uncertainty': 0.0 } constants['hbar'] = { 'value': const.hbar, 'uncertainty': 0.0, 'unit': 'J⋅s', 'source': 'SI definition (exact)', 'relative_uncertainty': 0.0 } constants['e'] = { 'value': const.e, 'uncertainty': 0.0, 'unit': 'C', 'source': 'SI definition (exact)', 'relative_uncertainty': 0.0 } # Measured constants with uncertainties for name, scipy_name in [ ('me', 'electron mass'), ('alpha', 'fine-structure constant'), ('a0', 'Bohr radius'), ('epsilon_0', 'electric constant'), ('G', 'Newtonian constant of gravitation') ]: if scipy_name in physical_constants: value, unit, uncertainty = physical_constants[scipy_name] constants[name] = { 'value': value, 'uncertainty': uncertainty, 'unit': unit, 'source': f'CODATA 2022 via scipy.constants', 'relative_uncertainty': uncertainty/value if value != 0 else 0.0 } # Calculate Coulomb constant (avoid const.k confusion) if 'epsilon_0' in constants: eps0 = constants['epsilon_0']['value'] eps0_unc = constants['epsilon_0']['uncertainty'] k_val = 1.0 / (4 * np.pi * eps0) k_unc = k_val * (eps0_unc / eps0) if eps0 != 0 else 0.0 constants['k'] = { 'value': k_val, 'uncertainty': k_unc, 'unit': 'N⋅m²⋅C⁻²', 'source': 'Calculated from electric constant', 'relative_uncertainty': k_unc / k_val if k_val != 0 else 0.0 } return constants except Exception as e: print(f"ERROR fetching CODATA constants: {e}") return None def load_v21_parameters(): """Load exact parameters from paper version 21""" # Exact values from examples_v21.tex v21_params = { 'subatomic_proton': { 'hbar': 1.054e-34, # J·s (Planck's constant) 'quark_spin': 0.5, # s = 1/2 for quarks 'effective_quark_mass': 4e-30, # kg (few MeV/c²) 'effective_proton_radius': 1.0e-15, # m (proton radius) 'string_tension': 1.4e5, # N (QCD flux-tube tension) 'source': 'Paper v21 examples_v21.tex subatomic scale' }, 'nuclear_general': { 'sigma_coefficient': 1.4e5, # N (from v21) 'typical_nuclear_radius': 1e-15, # m 'source': 'Paper v21 nuclear scale parameters' } } return v21_params def load_pdg_constants(): """Load particle physics constants from PDG or use authoritative values""" # PDG 2022 values for nuclear physics # Source: https://pdg.lbl.gov/2022/reviews/rpp2022-rev-phys-constants.pdf constants = { 'proton_mass': { 'value': 1.67262192595e-27, # kg 'uncertainty': 5.2e-37, 'unit': 'kg', 'source': 'PDG 2022' }, 'neutron_mass': { 'value': 1.67492750056e-27, # kg 'uncertainty': 8.5e-37, 'unit': 'kg', 'source': 'PDG 2022' }, 'up_quark_mass': { 'value': 2.16e-30, # kg (2.16 MeV/c²) 'uncertainty': 0.49e-30, 'unit': 'kg', 'source': 'PDG 2022 (current mass)', 'note': 'Current quark mass, not constituent' }, 'down_quark_mass': { 'value': 4.67e-30, # kg (4.67 MeV/c²) 'uncertainty': 0.48e-30, 'unit': 'kg', 'source': 'PDG 2022 (current mass)', 'note': 'Current quark mass, not constituent' }, 'qcd_string_tension': { 'value': 0.18e9 * const.e / 1e-15 if SCIPY_AVAILABLE else 2.88e-11, # N 'uncertainty': 0.02e9 * const.e / 1e-15 if SCIPY_AVAILABLE else 3.2e-12, 'unit': 'N', 'source': 'Lattice QCD (FLAG 2021)', 'note': 'σ = 0.18 ± 0.02 GeV²/fm' }, 'alpha_s': { 'value': 0.1179, # at M_Z scale 'uncertainty': 0.0010, 'unit': 'dimensionless', 'source': 'PDG 2022 (at M_Z = 91.2 GeV)', 'note': 'Strong coupling constant' } } return constants def load_nasa_planetary_data(): """Load planetary data from NASA JPL or use authoritative cached values""" # High-precision values from NASA JPL Planetary Fact Sheet # https://nssdc.gsfc.nasa.gov/planetary/factsheet/ # and IAU 2015 nominal values planets = { 'Mercury': { 'mass': 3.30104e23, # kg ± 1e18 (NASA JPL 2021) 'semimajor_axis': 5.7909050e10, # m (IAU 2015 exact) 'eccentricity': 0.20563593, # (NASA JPL) 'orbital_period': 87.9691, # days 'mean_orbital_velocity': 47362, # m/s 'mass_uncertainty': 1e18, 'source': 'NASA JPL Planetary Fact Sheet 2021, IAU 2015' }, 'Venus': { 'mass': 4.86732e24, 'semimajor_axis': 1.0820893e11, 'eccentricity': 0.00677672, 'orbital_period': 224.701, 'mean_orbital_velocity': 35020, 'mass_uncertainty': 1e19, 'source': 'NASA JPL Planetary Fact Sheet 2021' }, 'Earth': { 'mass': 5.97219e24, # kg (CODATA 2018) 'semimajor_axis': 1.495978707e11, # m (IAU 2012 exact) 'eccentricity': 0.01671123, 'orbital_period': 365.256363004, 'mean_orbital_velocity': 29784.77, 'mass_uncertainty': 6e19, # CODATA uncertainty 'source': 'CODATA 2018, IAU 2012' }, 'Mars': { 'mass': 6.41693e23, 'semimajor_axis': 2.2793664e11, 'eccentricity': 0.0933941, 'orbital_period': 686.980, 'mean_orbital_velocity': 24077, 'mass_uncertainty': 1e18, 'source': 'NASA JPL Planetary Fact Sheet 2021' }, 'Jupiter': { 'mass': 1.89813e27, 'semimajor_axis': 7.7857e11, 'eccentricity': 0.0489, 'orbital_period': 4332.589, 'mean_orbital_velocity': 13056, 'mass_uncertainty': 1.9e23, 'source': 'NASA JPL Planetary Fact Sheet 2021' } } # Add solar mass from IAU 2015 planets['_solar_constants'] = { 'M_sun': 1.9884754153381438e30, # kg (IAU 2015 nominal) 'M_sun_uncertainty': 0, # Defined value 'AU': 1.495978707e11, # m (IAU 2012 exact) 'source': 'IAU 2015 nominal values' } return planets def load_galactic_data(): """Load galactic rotation data from literature or use authoritative compilation""" # Compilation from multiple authoritative sources: # - Reid et al. (2019) ApJ 885, 131 - Solar position # - Sofue (2020) PASJ 72, 4 - Galaxy rotation curve # - Gaia Collaboration (2021) A&A 649, A1 - Gaia EDR3 # - McMillan (2017) MNRAS 465, 76 - Mass model galactic_data = { 'solar_position': { 'R0': 8178, # pc ± 13 (Reid et al. 2019) 'R0_uncertainty': 13, 'V0': 220, # km/s ± 3 (Reid et al. 2019) 'V0_uncertainty': 3, 'source': 'Reid et al. (2019) ApJ 885, 131' }, 'rotation_curve': [ # R (kpc), V_circular (km/s), V_error (km/s), Source {'R_kpc': 1.0, 'V_kms': 180, 'V_error': 15, 'source': 'Inner Galaxy (Sofue 2020)'}, {'R_kpc': 2.0, 'V_kms': 220, 'V_error': 10, 'source': 'Gaia DR3 + APOGEE'}, {'R_kpc': 4.0, 'V_kms': 235, 'V_error': 8, 'source': 'Gaia DR3'}, {'R_kpc': 6.0, 'V_kms': 240, 'V_error': 10, 'source': 'Gaia DR3'}, {'R_kpc': 8.178, 'V_kms': 220, 'V_error': 3, 'source': 'Solar position (Reid 2019)'}, {'R_kpc': 10.0, 'V_kms': 225, 'V_error': 12, 'source': 'Outer disk tracers'}, {'R_kpc': 15.0, 'V_kms': 220, 'V_error': 20, 'source': 'Globular clusters'}, {'R_kpc': 20.0, 'V_kms': 210, 'V_error': 25, 'source': 'Satellite galaxies'}, {'R_kpc': 25.0, 'V_kms': 200, 'V_error': 30, 'source': 'Extended halo'} ], 'mass_model': { 'bulge_mass': 1.5e10, # Solar masses (McMillan 2017) 'bulge_uncertainty': 0.3e10, 'disk_mass': 6.43e10, # Solar masses 'disk_uncertainty': 0.5e10, 'dark_halo_mass': 1.3e12, # Solar masses (within 200 kpc) 'dark_halo_uncertainty': 0.3e12, 'source': 'McMillan (2017) MNRAS 465, 76' } } return galactic_data # ============================================================================== # HIGH-PRECISION CALCULATION ENGINES # ============================================================================== def calculate_v21_quark_confinement(v21_params): """Calculate quark confinement in proton using exact v21 parameters""" try: # Extract v21 parameters params = v21_params['subatomic_proton'] hbar = params['hbar'] # J·s s = params['quark_spin'] # spin quantum number m = params['effective_quark_mass'] # kg r = params['effective_proton_radius'] # m sigma = params['string_tension'] # N # Calculate v21 formula: F_total = (hbar^2 * s^2)/(m * r^3) + sigma # Non-relativistic (gamma = 1) as in v21 gamma = 1.0 F_geometric = (hbar**2 * s**2) / (gamma * m * r**3) F_confinement = sigma F_total = F_geometric + F_confinement # Additional useful quantities geometric_fraction = F_geometric / F_total confinement_fraction = F_confinement / F_total # Compare to typical strong force magnitude (for context) typical_strong_force = 8.2e5 # N (from v21 expected result) agreement_with_expected = F_total / typical_strong_force result = { 'parameters': { 'hbar_Js': hbar, 'spin_s': s, 'mass_kg': m, 'radius_m': r, 'radius_fm': r * 1e15, 'string_tension_N': sigma, 'gamma': gamma }, 'forces': { 'F_geometric_N': F_geometric, 'F_confinement_N': F_confinement, 'F_total_N': F_total, 'geometric_fraction': geometric_fraction, 'confinement_fraction': confinement_fraction }, 'comparison': { 'expected_total_N': typical_strong_force, 'agreement_ratio': agreement_with_expected, 'agreement_percent': agreement_with_expected * 100 }, 'source': params['source'] } return result except Exception as e: print(f"ERROR in v21 quark confinement calculation: {e}") return None def calculate_atomic_forces(Z, constants): """Calculate atomic forces with high precision""" if not constants: return None getcontext().prec = 100 try: # Convert to high-precision Decimal hbar = Decimal(str(constants['hbar']['value'])) me = Decimal(str(constants['me']['value'])) e = Decimal(str(constants['e']['value'])) k = Decimal(str(constants['k']['value'])) a0 = Decimal(str(constants['a0']['value'])) alpha = Decimal(str(constants['alpha']['value'])) # Slater's rules for effective charge (simplified) Z_dec = Decimal(str(Z)) if Z == 1: Z_eff = Decimal('1.0') elif Z == 2: Z_eff = Z_dec - Decimal('0.3125') else: screening = Decimal('0.31') + Decimal('0.002') * (Z_dec - Decimal('2')) / Decimal('98') Z_eff = Z_dec - screening # Orbital radius r = a0 / Z_eff # Relativistic correction v_over_c = Z_dec * alpha if v_over_c < Decimal('0.1'): v2 = v_over_c * v_over_c gamma = Decimal('1') + v2 / Decimal('2') + Decimal('3') * v2 * v2 / Decimal('8') else: gamma = Decimal('1') / (Decimal('1') - v_over_c * v_over_c).sqrt() # QED corrections for heavy elements if Z > 70: alpha_sq = alpha * alpha z_ratio = Z_dec / Decimal('137') qed_correction = Decimal('1') + alpha_sq * z_ratio * z_ratio / Decimal('8') gamma = gamma * qed_correction # Calculate forces F_geometric = hbar * hbar / (gamma * me * r * r * r) F_coulomb = k * Z_eff * e * e / (gamma * r * r) # Results ratio = F_geometric / F_coulomb deviation_ppb = abs(Decimal('1') - ratio) * Decimal('1e9') return { 'Z': Z, 'Z_eff': float(Z_eff), 'r_pm': float(r * Decimal('1e12')), 'gamma': float(gamma), 'F_geometric': float(F_geometric), 'F_coulomb': float(F_coulomb), 'ratio': float(ratio), 'deviation_ppb': float(deviation_ppb), 'uncertainties': { 'me_contrib': float(Decimal(constants['me']['relative_uncertainty']) * Decimal('1e9')), 'k_contrib': float(Decimal(constants['k']['relative_uncertainty']) * Decimal('1e9')), 'a0_contrib': float(Decimal(constants['a0']['relative_uncertainty']) * Decimal('1e9')) } } except Exception as e: print(f"ERROR in atomic calculation for Z={Z}: {e}") return None def calculate_nuclear_forces(r_fm_array, nuclear_constants): """Calculate nuclear forces with geometric + confinement model""" if not nuclear_constants: return None try: # Get nuclear parameters m_up = nuclear_constants['up_quark_mass']['value'] m_down = nuclear_constants['down_quark_mass']['value'] m_q_avg = (m_up + m_down) / 2 sigma_qcd = nuclear_constants['qcd_string_tension']['value'] if SCIPY_AVAILABLE: hbar = const.hbar else: hbar = 1.054571817e-34 results = [] for r_fm in r_fm_array: r = r_fm * 1e-15 # Convert fm to meters # Geometric force using average light quark mass F_geometric = hbar**2 / (m_q_avg * r**3) # QCD confinement force F_confinement = sigma_qcd * r # Total force F_total = F_geometric + F_confinement # Determine dominant term geometric_fraction = F_geometric / F_total confinement_fraction = F_confinement / F_total results.append({ 'r_fm': r_fm, 'F_geometric': F_geometric, 'F_confinement': F_confinement, 'F_total': F_total, 'geometric_fraction': geometric_fraction, 'confinement_fraction': confinement_fraction, 'dominant': 'geometric' if F_geometric > F_confinement else 'confinement' }) # Calculate crossover point crossover_r = (hbar**2 / (m_q_avg * sigma_qcd))**(1/4) return { 'results': results, 'crossover_fm': crossover_r * 1e15, 'parameters': { 'm_q_avg_MeV': m_q_avg * (const.c**2 if SCIPY_AVAILABLE else 9e16) / (const.e if SCIPY_AVAILABLE else 1.6e-19) / 1e6, 'sigma_GeV2_fm': sigma_qcd * 1e-15 / (const.e if SCIPY_AVAILABLE else 1.6e-19) / 1e9 } } except Exception as e: print(f"ERROR in nuclear calculation: {e}") return None def calculate_planetary_forces(planetary_data, constants): """Calculate planetary forces using geometric formula""" if not planetary_data or not constants: return None try: hbar = constants['hbar']['value'] G = constants['G']['value'] M_sun = planetary_data['_solar_constants']['M_sun'] c = constants['c']['value'] results = {} for planet_name, data in planetary_data.items(): if planet_name.startswith('_'): continue m = data['mass'] a = data['semimajor_axis'] v = data['mean_orbital_velocity'] e = data['eccentricity'] # Calculate quantum number s = mvr/ℏ s = m * v * a / hbar # Relativistic factor (usually negligible for planets) gamma = 1 / np.sqrt(1 - (v/c)**2) # Geometric force: F = s²ℏ²/(γmr³) F_geometric = s**2 * hbar**2 / (gamma * m * a**3) # Classical centripetal force: F = mv²/r F_classical = m * v**2 / a # Gravitational force at semi-major axis F_gravity = G * M_sun * m / a**2 # Calculate ratios geometric_classical_ratio = F_geometric / F_classical centripetal_gravity_ratio = F_classical / F_gravity results[planet_name] = { 'mass_kg': m, 'semimajor_axis_AU': a / planetary_data['_solar_constants']['AU'], 'velocity_kms': v / 1000, 'eccentricity': e, 'quantum_number_s': s, 'gamma_factor': gamma, 'F_geometric': F_geometric, 'F_classical': F_classical, 'F_gravity': F_gravity, 'geometric_classical_ratio': geometric_classical_ratio, 'geometric_classical_deviation': abs(geometric_classical_ratio - 1), 'centripetal_gravity_ratio': centripetal_gravity_ratio, 'centripetal_gravity_deviation': abs(centripetal_gravity_ratio - 1), 'mass_uncertainty': data.get('mass_uncertainty', 0) / m if m != 0 else 0 } return results except Exception as e: print(f"ERROR in planetary calculation: {e}") return None def calculate_galactic_forces(galactic_data, constants): """Calculate galactic rotation using geometric principle""" if not galactic_data or not constants: return None try: G = constants['G']['value'] hbar = constants['hbar']['value'] c = constants['c']['value'] # Solar constants M_sun = 1.9884754153381438e30 # kg (IAU 2015) pc_to_m = 3.0857e16 # parsec to meters # Mass model parameters M_bulge = galactic_data['mass_model']['bulge_mass'] * M_sun M_disk = galactic_data['mass_model']['disk_mass'] * M_sun R_disk = 3.0 * 1000 * pc_to_m # 3 kpc scale length results = [] for point in galactic_data['rotation_curve']: R_kpc = point['R_kpc'] V_obs_kms = point['V_kms'] V_error = point['V_error'] # Convert units R = R_kpc * 1000 * pc_to_m # kpc to meters V_obs = V_obs_kms * 1000 # km/s to m/s # Simple mass model (bulge + exponential disk) M_enclosed = M_bulge + M_disk * (1 - np.exp(-R/R_disk)) # Predicted velocity from Newtonian gravity V_newton = np.sqrt(G * M_enclosed / R) # Test geometric principle with typical stellar mass m_star = M_sun # Use solar mass as test mass s = m_star * V_obs * R / hbar # Quantum number # Geometric prediction: F = s²ℏ²/(mr³) should equal mv²/r F_geometric = s**2 * hbar**2 / (m_star * R**3) F_centripetal = m_star * V_obs**2 / R geometric_ratio = F_geometric / F_centripetal # Compare observed vs predicted velocities newton_obs_ratio = V_newton / V_obs velocity_discrepancy = V_obs - V_newton results.append({ 'R_kpc': R_kpc, 'V_obs_kms': V_obs_kms, 'V_error_kms': V_error, 'V_newton_kms': V_newton / 1000, 'M_enclosed_Msun': M_enclosed / M_sun, 'quantum_number_s': s, 'geometric_centripetal_ratio': geometric_ratio, 'newton_obs_ratio': newton_obs_ratio, 'velocity_discrepancy_kms': velocity_discrepancy / 1000, 'dark_matter_factor': (V_obs / V_newton)**2 # (V_obs/V_pred)² gives mass ratio }) return results except Exception as e: print(f"ERROR in galactic calculation: {e}") return None # ============================================================================== # MAIN VERIFICATION ROUTINE # ============================================================================== def main(): """Main multiscale verification including v21 quark confinement test""" print("MULTISCALE HIGH-PRECISION VERIFICATION v21") print("="*70) print("Includes quark confinement test from paper version 21") print("External data sources only. No conclusions drawn - data speaks for itself.") print("Repository: https://git.esus.name/esus/spin_paper/") print() # Load all external data print("LOADING EXTERNAL DATA SOURCES") print("-" * 40) v21_params = load_v21_parameters() codata_constants = load_codata_constants() nuclear_constants = load_pdg_constants() planetary_data = load_nasa_planetary_data() galactic_data = load_galactic_data() print(f"✓ v21 parameters: {len(v21_params)} parameter sets") if codata_constants: print(f"✓ CODATA constants: {len(codata_constants)} values") else: print("❌ CODATA constants: Failed to fetch") print(f"✓ Nuclear constants: {len(nuclear_constants)} values (PDG 2022)") print(f"✓ Planetary data: {len(planetary_data)-1} planets (NASA JPL)") print(f"✓ Galactic data: {len(galactic_data['rotation_curve'])} points (Gaia+literature)") # 0. V21 QUARK CONFINEMENT TEST print(f"\n" + "="*70) print("0. SUBATOMIC SCALE (V21): F = ℏ²s²/(γmr³) + σ") print("="*70) print("Source: Paper v21 examples_v21.tex") v21_result = calculate_v21_quark_confinement(v21_params) if v21_result: print("Parameters from paper v21:") p = v21_result['parameters'] print(f" ℏ = {p['hbar_Js']:.3e} J⋅s") print(f" s = {p['spin_s']} (quark spin)") print(f" m = {p['mass_kg']:.3e} kg ({p['mass_kg'] / (1.783e-30):.1f} MeV/c²)") print(f" r = {p['radius_fm']:.1f} fm") print(f" σ = {p['string_tension_N']:.1e} N") print(f" γ = {p['gamma']} (non-relativistic)") print("\nForce components:") f = v21_result['forces'] print(f" F_geometric = ℏ²s²/(γmr³) = {f['F_geometric_N']:.1e} N") print(f" F_confinement = σ = {f['F_confinement_N']:.1e} N") print(f" F_total = {f['F_total_N']:.1e} N") print(f" Geometric fraction: {f['geometric_fraction']*100:.1f}%") print(f" Confinement fraction: {f['confinement_fraction']*100:.1f}%") print("\nComparison to expected strong force:") c = v21_result['comparison'] print(f" Expected total: {c['expected_total_N']:.1e} N") print(f" Calculated total: {f['F_total_N']:.1e} N") print(f" Agreement: {c['agreement_percent']:.1f}%") # 1. ATOMIC SCALE VERIFICATION print(f"\n" + "="*70) print("1. ATOMIC SCALE: F = ℏ²/(γmr³) = ke²/r²") print("="*70) print("Source: CODATA 2022 via scipy.constants") if codata_constants: test_elements = [1, 6, 18, 26, 47, 79, 92] print(f"{'Z':<3} {'Element':<8} {'Z_eff':<6} {'r(pm)':<8} {'γ':<8} {'Ratio':<18} {'Dev(ppb)':<10}") print("-" * 70) atomic_deviations = [] for Z in test_elements: result = calculate_atomic_forces(Z, codata_constants) if result: element_names = {1:'H', 6:'C', 18:'Ar', 26:'Fe', 47:'Ag', 79:'Au', 92:'U'} elem = element_names.get(Z, f'Z{Z}') print(f"{Z:<3} {elem:<8} {result['Z_eff']:<6.3f} {result['r_pm']:<8.2f} " f"{result['gamma']:<8.5f} {result['ratio']:<18.15f} {result['deviation_ppb']:<10.6f}") atomic_deviations.append(result['deviation_ppb']) if atomic_deviations: mean_dev = np.mean(atomic_deviations) std_dev = np.std(atomic_deviations) print(f"\nStatistics: Mean = {mean_dev:.6f} ppb, Std = {std_dev:.10f} ppb") # Show uncertainty contributions print(f"\nUncertainty sources (ppb):") if test_elements and calculate_atomic_forces(1, codata_constants): unc = calculate_atomic_forces(1, codata_constants)['uncertainties'] print(f" Electron mass: {unc['me_contrib']:.3f}") print(f" Coulomb constant: {unc['k_contrib']:.3f}") print(f" Bohr radius: {unc['a0_contrib']:.3f}") # 2. NUCLEAR SCALE VERIFICATION print(f"\n" + "="*70) print("2. NUCLEAR SCALE: F = ℏ²/(γm_q r³) + σr") print("="*70) print("Source: PDG 2022 + Lattice QCD") r_range = np.logspace(-1, 0.5, 12) # 0.1 to ~3 fm nuclear_result = calculate_nuclear_forces(r_range, nuclear_constants) if nuclear_result: print(f"Quark mass: {nuclear_result['parameters']['m_q_avg_MeV']:.2f} MeV/c²") print(f"String tension: {nuclear_result['parameters']['sigma_GeV2_fm']:.2f} GeV²/fm") print(f"Crossover: {nuclear_result['crossover_fm']:.3f} fm") print() print(f"{'r(fm)':<8} {'F_geom(N)':<12} {'F_conf(N)':<12} {'Geom%':<8} {'Dominant':<10}") print("-" * 55) for res in nuclear_result['results']: print(f"{res['r_fm']:<8.3f} {res['F_geometric']:<12.3e} {res['F_confinement']:<12.3e} " f"{res['geometric_fraction']*100:<8.1f} {res['dominant']:<10}") # 3. PLANETARY SCALE VERIFICATION print(f"\n" + "="*70) print("3. PLANETARY SCALE: F = s²ℏ²/(γmr³) = mv²/r") print("="*70) print("Source: NASA JPL + IAU standards") planetary_result = calculate_planetary_forces(planetary_data, codata_constants) if planetary_result: print(f"{'Planet':<8} {'s-factor':<12} {'Geom/Class':<12} {'Cent/Grav':<12} {'Ecc':<8}") print("-" * 55) for planet, res in planetary_result.items(): print(f"{planet:<8} {res['quantum_number_s']:<12.2e} " f"{res['geometric_classical_ratio']:<12.10f} " f"{res['centripetal_gravity_ratio']:<12.8f} {res['eccentricity']:<8.5f}") # 4. GALACTIC SCALE VERIFICATION print(f"\n" + "="*70) print("4. GALACTIC SCALE: Same formula, expected breakdown") print("="*70) print("Source: Gaia DR3 + Reid 2019 + McMillan 2017") galactic_result = calculate_galactic_forces(galactic_data, codata_constants) if galactic_result: print(f"{'R(kpc)':<7} {'V_obs':<8} {'V_pred':<8} {'V_ratio':<8} {'DM_factor':<10} {'s-factor':<12}") print("-" * 60) for res in galactic_result: print(f"{res['R_kpc']:<7.1f} {res['V_obs_kms']:<8.0f} " f"{res['V_newton_kms']:<8.0f} {res['newton_obs_ratio']:<8.3f} " f"{res['dark_matter_factor']:<10.2f} {res['quantum_number_s']:<12.2e}") # 5. DATA SOURCES SUMMARY print(f"\n" + "="*70) print("DATA SOURCES") print("="*70) print("Subatomic v21: Paper v21 examples_v21.tex") print("Atomic: CODATA 2022 via scipy.constants") print("Nuclear: PDG 2022 + FLAG 2021 Lattice QCD") print("Planetary: NASA JPL Fact Sheet 2021 + IAU 2015") print("Galactic: Gaia DR3 + Reid (2019) + McMillan (2017)") print(f"\nNOTE: Results presented without interpretation.") print(f"Observer should evaluate where formulas work/fail.") print(f"v21 quark confinement test uses exact paper parameters.") if __name__ == "__main__": if len(sys.argv) > 1 and sys.argv[1] in ['-h', '--help']: print("Usage: python multiscale_high_precision.py") print(" Multiscale verification using external data only") print(" Tests geometric force principle across all scales") print(" Includes v21 quark confinement test") sys.exit(0) main()