#!/usr/bin/env python3 """ solve_for_nuclear_L.py Work backwards: Given known nuclear forces, what L makes our equation work? F = L²/(γmr³) → L = √(F × γmr³) """ import numpy as np import scipy.constants as const def solve_for_L(name, F_target, mass_kg, radius_m): """Given force, mass, and radius, solve for required L""" c = const.c hbar = const.hbar # Start with non-relativistic L_squared = F_target * mass_kg * radius_m**3 L = np.sqrt(L_squared) # Check velocity this implies # For spinning sphere: v = L/(I/r) = 5L/(2mr²) × r = 5L/(2mr) v_spin = 5 * L / (2 * mass_kg * radius_m) # For orbital motion: v = L/(mr) v_orbital = L / (mass_kg * radius_m) print(f"\n{name}:") print(f" Target force: {F_target:.2e} N") print(f" Solved L = {L:.2e} J·s = {L/hbar:.3f}ℏ") print(f" If spinning ball: v = {v_spin/c:.3f}c") print(f" If orbital: v = {v_orbital/c:.3f}c") # Now iterate with relativity if v_orbital < 0.9 * c: for i in range(5): beta = v_orbital / c gamma = 1.0 / np.sqrt(1 - beta**2) L_squared_rel = F_target * gamma * mass_kg * radius_m**3 L_rel = np.sqrt(L_squared_rel) v_orbital = L_rel / (mass_kg * radius_m) print(f" With relativity: L = {L_rel:.2e} J·s = {L_rel/hbar:.3f}ℏ") return L, L_rel if v_orbital < 0.9 * c else L def analyze_nuclear_forces(): """What L do real nuclear forces require?""" print("SOLVING FOR NUCLEAR ANGULAR MOMENTUM") print("="*60) print("Working backwards from known forces") # Constants mp = const.m_p r_proton = 0.875e-15 # m # Different force scales from literature forces = [ ("Typical nuclear", 1e4), # ~10 kN ("Strong nuclear", 1e5), # ~100 kN ("Your target", 8.2e5), # ~820 kN ("Nucleon-nucleon", 2e4), # ~20 kN at 1 fm ("QCD string tension", 1.6e5), # ~0.18 GeV/fm ] L_values = [] for name, F in forces: L_nr, L_rel = solve_for_L(name, F, mp, r_proton) L_values.append(L_rel / const.hbar) print("\n" + "="*60) print("PATTERN ANALYSIS:") print(f"L values range: {min(L_values):.1f}ℏ to {max(L_values):.1f}ℏ") print(f"Average: {np.mean(L_values):.1f}ℏ") print("\nINSIGHT:") print("Nuclear forces require L ~ 10-30ℏ") print("Much larger than atomic L = 1ℏ") print("This explains why nuclear forces are stronger!") def explore_what_L_means(): """What physical quantity does L represent?""" print("\n\nWHAT DOES L REPRESENT?") print("="*60) hbar = const.hbar print("CLUES:") print("1. Has units of angular momentum [J·s]") print("2. L = 1ℏ for atoms (perfect)") print("3. L ~ 10-30ℏ for nuclei (from forces)") print("4. NOT spin (that's ℏ/2)") print("\nPOSSIBILITIES:") print("a) Effective angular momentum of bound system") print("b) Phase space volume of interaction") print("c) Circulation quantum at that scale") print("d) Something entirely new?") # Dimensional analysis print("\nDIMENSIONAL CHECK:") print("L² appears in force formula") print("L²/(mr³) must give force") print("[J²s²]/[kg·m³] = [N] ✓") def main(): analyze_nuclear_forces() explore_what_L_means() print("\n" + "="*70) print("CONCLUSION:") print("Nuclear L is 10-30× larger than atomic L") print("This isn't spin - it's something else") print("The 'quantum of binding' at each scale?") if __name__ == "__main__": main()