#!/usr/bin/env python3 """ test_relativistic_quarks.py - WITH PROPER LORENTZ FACTORS Critical fix: Include relativistic effects properly! """ import numpy as np import scipy.constants as const def analyze_with_relativity(name, mass_mev, radius_fm, alpha_s): """Properly include relativistic effects""" # Constants hbar = const.hbar c = const.c e = const.e mev_to_kg = e * 1e6 / c**2 # Convert units m0 = mass_mev * mev_to_kg # REST mass r = radius_fm * 1e-15 CF = 4.0/3.0 # This gets tricky - we need to solve self-consistently # because v depends on s, but γ depends on v # Start with non-relativistic estimate s_squared_nr = CF * alpha_s * m0 * c * r / hbar s_nr = np.sqrt(s_squared_nr) # Iterate to find self-consistent solution s = s_nr for i in range(10): v = s * hbar / (m0 * r) # Using rest mass beta = v / c if beta >= 1.0: print(f"ERROR: v > c for {name}!") beta = 0.99 gamma = 1.0 / np.sqrt(1 - beta**2) # Recalculate s with relativistic correction # But how exactly? This is the key question! s_new = np.sqrt(CF * alpha_s * m0 * c * r * gamma / hbar) if abs(s_new - s) < 0.001: break s = s_new # Final forces with proper γ F_geometric = (hbar**2 * s**2) / (gamma * m0 * r**3) sigma = 0.18 * (e * 1e9 / 1e-15) F_total = F_geometric + sigma print(f"\n{name}:") print(f" Rest mass: {mass_mev} MeV/c²") print(f" Velocity: v = {v/c:.3f}c") print(f" Lorentz γ = {gamma:.3f}") print(f" s factor = {s:.3f}") print(f" F_geometric = {F_geometric:.2e} N") print(f" F_total = {F_total:.2e} N") return s, gamma, F_total def main(): print("RELATIVISTIC QUARK ANALYSIS - PROPER LORENTZ FACTORS") print("="*60) systems = [ ("Pion (qq̄)", 140, 1.0, 0.5), ("Light quark", 336, 0.875, 0.4), ("J/ψ (cc̄)", 3097, 0.2, 0.3), ] for system in systems: analyze_with_relativity(*system) print("\n" + "="*60) print("CRITICAL INSIGHT:") print("At v ~ c, relativistic effects DOMINATE!") print("This could explain why different systems need different s") print("Maybe s encodes relativistic dynamics?") if __name__ == "__main__": main()