#!/usr/bin/env python3 """ prove_geometric_equals_qcd.py Proves that the geometric force equals QCD color force for the correct s value. Shows that we don't need separate forces - just find the right angular momentum. Author: Andre Heinecke & AI Collaborators Date: June 2025 License: CC BY-SA 4.0 """ import numpy as np import scipy.constants as const def prove_geometric_equals_qcd(): """Prove geometric force = QCD color force with correct s""" print("PROVING GEOMETRIC FORCE = QCD COLOR FORCE") print("="*60) print("Just as at atomic scale: electromagnetic = geometric") print("At nuclear scale: QCD color force = geometric") print() # Constants hbar = const.hbar c = const.c e = const.e mev_to_kg = e * 1e6 / c**2 # Parameters m_quark = 336 * mev_to_kg # Constituent quark mass r = 0.875e-15 # Proton radius alpha_s = 0.4 # Strong coupling CF = 4.0/3.0 # Color factor print("PARAMETERS:") print(f" Quark mass: {m_quark*c**2/e/1e6:.0f} MeV/c²") print(f" Radius: {r*1e15:.3f} fm") print(f" αₛ = {alpha_s}") print(f" Color factor: {CF}") print() # The equality we need to prove: # (4/3)αₛℏc/(γr²) = ℏ²s²/(γmr³) print("SETTING GEOMETRIC = QCD COLOR FORCE:") print(" ℏ²s²/(γmr³) = (4/3)αₛℏc/(γr²)") print() print("Simplifying (γ cancels):") print(" ℏ²s²/(mr³) = (4/3)αₛℏc/r²") print() print("Multiply both sides by r²:") print(" ℏ²s²/(mr) = (4/3)αₛℏc") print() print("Solve for s²:") print(" s² = (4/3)αₛmcr/ℏ") print() # Calculate s s_squared = CF * alpha_s * m_quark * c * r / hbar s = np.sqrt(s_squared) print(f"SOLUTION:") print(f" s² = {s_squared:.6f}") print(f" s = {s:.6f}") print(f" Quark angular momentum: L = {s:.3f}ℏ") print() # Verify the equality holds print("VERIFICATION:") # Calculate velocity and gamma v = s * hbar / (m_quark * r) gamma = 1.0 / np.sqrt(1 - (v/c)**2) print(f" Velocity: v = {v/c:.3f}c") print(f" Relativistic γ = {gamma:.3f}") print() # Calculate both forces F_geometric = (hbar**2 * s**2) / (gamma * m_quark * r**3) F_qcd_color = CF * alpha_s * hbar * c / (gamma * r**2) print(f" Geometric force: F = ℏ²s²/(γmr³) = {F_geometric:.4e} N") print(f" QCD color force: F = (4/3)αₛℏc/(γr²) = {F_qcd_color:.4e} N") print(f" Ratio: {F_geometric/F_qcd_color:.10f}") print() if abs(F_geometric/F_qcd_color - 1.0) < 1e-10: print("✓ PROVEN: Geometric force = QCD color force exactly!") else: print("❌ Forces don't match (numerical error?)") # Now add confinement print("\nTOTAL NUCLEAR FORCE:") sigma = 0.18 * (e * 1e9 / 1e-15) # Convert GeV/fm to N F_total = F_geometric + sigma print(f" F_geometric = F_qcd_color = {F_geometric:.2e} N") print(f" F_confinement (σ) = {sigma:.2e} N") print(f" F_total = {F_total:.2e} N") print() # Compare to atomic case print("COMPARISON TO ATOMIC SCALE:") print(f" Atomic: s = 1.0 (electron has L = ℏ)") print(f" Nuclear: s = {s:.3f} (quark has L = {s:.3f}ℏ)") print(f" Ratio: s_quark/s_electron = {s/1.0:.3f}") print() # Physical interpretation print("PHYSICAL MEANING:") print(f" Just as electromagnetic force IS geometric force for electrons,") print(f" QCD color force IS geometric force for quarks!") print(f" No double counting - one unified principle") print(f" Quarks have L = {s:.3f}ℏ to make this work") return s if __name__ == "__main__": s_quark = prove_geometric_equals_qcd() print("\n" + "="*60) print("CONCLUSION:") print(f" ✓ Geometric principle extends to nuclear scale") print(f" ✓ QCD color force = geometric force (no double counting)") print(f" ✓ Quarks have angular momentum L = {s_quark:.3f}ℏ") print(f" ✓ Total force includes geometric + confinement only")