#!/usr/bin/env python3 """ verify_atoms_balls_external_constants.py Atomic scale verification using ONLY external authoritative constants Proves: F = ℏ²/(γmr³) = ke²/r² for all elements No hardcoded constants - all values fetched from: - SI Digital Framework: https://si-digital-framework.org/constants - NIST API: https://physics.nist.gov/cgi-bin/cuu/ - BIPM: https://www.bipm.org/en/measurement-units/ Author: Andre Heinecke & AI Collaborators Date: June 2025 License: CC BY-SA 4.0 """ import math import sys import urllib.request import urllib.error from decimal import Decimal, getcontext # Set high precision for exact calculations getcontext().prec = 50 class SIDigitalFrameworkConstants: """ Physical constants fetched from SI Digital Framework Source: https://si-digital-framework.org/constants No hardcoded fallback values - all from authoritative sources """ def __init__(self): self.constants = {} self.sources = {} self._fetch_si_constants() def _fetch_si_constants(self): """Fetch constants from SI Digital Framework""" print("Fetching constants from SI Digital Framework...") print("Source: https://si-digital-framework.org/constants") # Try to fetch the RDF/TTL file first ttl_url = "https://si-digital-framework.org/constants.ttl" try: import urllib.request import urllib.error # Set up request with proper headers headers = { 'User-Agent': 'Scientific Research Script (CC BY-SA 4.0)', 'Accept': 'text/turtle, application/rdf+xml, text/plain, */*', 'Accept-Language': 'en-US,en;q=0.9' } req = urllib.request.Request(ttl_url, headers=headers) with urllib.request.urlopen(req, timeout=30) as response: ttl_data = response.read().decode('utf-8') print(f"✓ Fetched {len(ttl_data)} characters from constants.ttl") self._parse_ttl_constants(ttl_data) return except Exception as e: print(f"⚠ Could not fetch constants.ttl: {e}") print("Falling back to individual constant URLs...") self._fetch_individual_constants() def _parse_ttl_constants(self, ttl_data): """Parse TTL/RDF data to extract constants""" print("Parsing TTL data for physical constants...") # Basic TTL parsing for our needed constants # This is a simple parser - for production use a proper RDF library lines = ttl_data.split('\n') current_resource = None current_props = {} # Constants we need and their likely identifiers target_constants = { 'h': ['planck-constant', 'PlanckConstant', 'h'], 'hbar': ['reduced-planck-constant', 'ReducedPlanckConstant', 'hbar'], 'c': ['speed-of-light', 'SpeedOfLight', 'c'], 'e': ['elementary-charge', 'ElementaryCharge', 'e'], 'm_e': ['electron-mass', 'ElectronMass', 'me'], 'alpha': ['fine-structure-constant', 'FineStructureConstant', 'alpha'], 'a0': ['bohr-radius', 'BohrRadius', 'a0'], 'k': ['coulomb-constant', 'CoulombConstant', 'k'], 'epsilon0': ['vacuum-permittivity', 'VacuumPermittivity', 'epsilon0'] } found_constants = {} for line in lines: line = line.strip() # Skip comments and empty lines if not line or line.startswith('#'): continue # Look for resource definitions if line.startswith('<') and '>' in line and (' a ' in line or 'rdf:type' in line): # This might be a constant definition resource_match = line.split('<')[1].split('>')[0] if '<' in line and '>' in line else None if resource_match: # Check if this looks like one of our target constants for const_name, identifiers in target_constants.items(): for identifier in identifiers: if identifier.lower() in resource_match.lower(): current_resource = const_name current_props = {'uri': resource_match} break # Look for properties of the current resource elif current_resource and ':' in line: if 'value' in line.lower() or 'numericalValue' in line.lower(): # Extract numerical value value_match = self._extract_ttl_value(line) if value_match: current_props['value'] = value_match elif 'uncertainty' in line.lower() or 'standardUncertainty' in line.lower(): # Extract uncertainty uncertainty_match = self._extract_ttl_value(line) if uncertainty_match: current_props['uncertainty'] = uncertainty_match elif 'unit' in line.lower(): # Extract unit unit_match = self._extract_ttl_value(line) if unit_match: current_props['unit'] = unit_match # End of resource definition elif line.startswith('.') and current_resource and 'value' in current_props: found_constants[current_resource] = current_props.copy() current_resource = None current_props = {} if found_constants: print(f"✓ Parsed {len(found_constants)} constants from TTL data") for name, props in found_constants.items(): self.constants[name] = props self.sources[name] = f"SI Digital Framework TTL: {props.get('uri', 'unknown')}" else: print("⚠ No constants found in TTL data, trying individual URLs") self._fetch_individual_constants() def _extract_ttl_value(self, line): """Extract value from TTL property line""" # Simple extraction - look for quoted strings or numbers import re # Look for quoted values quote_match = re.search(r'"([^"]+)"', line) if quote_match: return quote_match.group(1) # Look for bare numbers number_match = re.search(r'(\d+\.?\d*(?:[eE][+-]?\d+)?)', line) if number_match: return number_match.group(1) return None def _fetch_individual_constants(self): """Fetch constants from individual authoritative URLs""" print("Fetching individual constants from authoritative sources...") # Direct links to individual constants from SI Digital Framework and NIST constant_urls = { 'h': { 'url': 'https://www.nist.gov/si-redefinition/meet-constants', 'value': '6.62607015e-34', # This should be fetched, not hardcoded 'source': 'SI 2019 definition (exact)' }, 'c': { 'url': 'https://physics.nist.gov/cgi-bin/cuu/Value?c', 'source': 'SI definition 1983 (exact)' }, 'e': { 'url': 'https://physics.nist.gov/cgi-bin/cuu/Value?e', 'source': 'SI 2019 definition (exact)' } # Add more individual URLs as needed } print("⚠ Individual constant fetching not yet implemented") print("This requires either:") print(" 1. Successful TTL parsing, or") print(" 2. Implementation of individual NIST API calls") print(" 3. Manual research of each constant's authoritative URL") raise ValueError("No authoritative constant sources available") def get_constant(self, name): """Get a constant by name, returning None if not available""" return self.constants.get(name) def get_value_as_decimal(self, name, precision=50): """Get constant value as high-precision Decimal""" const = self.get_constant(name) if not const or 'value' not in const: return None try: return Decimal(str(const['value'])) except (ValueError, TypeError) as e: print(f"⚠ Could not convert {name} to Decimal: {e}") return None def print_sources(self): """Print data sources for transparency""" print("\nDATA SOURCES (From SI Digital Framework)") print("="*50) if not self.constants: print("❌ No constants available - fetching failed") return for name, const in self.constants.items(): source = self.sources.get(name, "Unknown source") value = const.get('value', 'Unknown') uncertainty = const.get('uncertainty', 'Unknown') unit = const.get('unit', 'Unknown') print(f"{name:>6}: {value} ± {uncertainty} {unit}") print(f" Source: {source}") def verify_required_constants(self): """Verify we have all constants needed for atomic calculations""" required = ['h', 'c', 'e', 'm_e', 'alpha'] missing = [] for const in required: if const not in self.constants: missing.append(const) if missing: print(f"❌ Missing required constants: {missing}") print("Available constants:", list(self.constants.keys())) return False print("✓ All required constants available") return True def research_individual_constant_urls(): """ Research and document individual URLs for each physical constant This function helps build the authoritative URL database """ print("\n🔬 RESEARCH: Individual Constant URLs") print("="*60) constant_research = { 'Planck constant (h)': [ 'https://physics.nist.gov/cgi-bin/cuu/Value?h', 'https://www.bipm.org/en/measurement-units/si-constants', 'https://si-digital-framework.org/SI/constants/h' ], 'Speed of light (c)': [ 'https://physics.nist.gov/cgi-bin/cuu/Value?c', 'https://www.bipm.org/en/measurement-units/si-constants', 'https://si-digital-framework.org/SI/constants/c' ], 'Elementary charge (e)': [ 'https://physics.nist.gov/cgi-bin/cuu/Value?e', 'https://www.bipm.org/en/measurement-units/si-constants', 'https://si-digital-framework.org/SI/constants/e' ], 'Electron mass (mₑ)': [ 'https://physics.nist.gov/cgi-bin/cuu/Value?me', 'https://pdg.lbl.gov/', # Particle Data Group 'https://si-digital-framework.org/SI/constants/me' ], 'Fine structure constant (α)': [ 'https://physics.nist.gov/cgi-bin/cuu/Value?alph', 'https://si-digital-framework.org/SI/constants/alpha' ], 'Bohr radius (a₀)': [ 'https://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0', 'https://si-digital-framework.org/SI/constants/a0' ] } print("Authoritative URLs for physical constants:") for const_name, urls in constant_research.items(): print(f"\n{const_name}:") for i, url in enumerate(urls, 1): print(f" {i}. {url}") print(f"\n📋 NEXT STEPS:") print(f"1. Test each URL to verify it returns machine-readable data") print(f"2. Implement parsers for each authoritative source format") print(f"3. Build fallback chain: SI Digital → NIST → BIPM → PDG") print(f"4. Add uncertainty and unit parsing for each source") return constant_research def fetch_from_nist_api(constant_name): """ Fetch individual constant from NIST Web API Example: https://physics.nist.gov/cgi-bin/cuu/Value?h&n=json """ print(f"Fetching {constant_name} from NIST API...") # NIST parameter mapping nist_params = { 'h': 'h', # Planck constant 'hbar': 'hbar', # Reduced Planck constant 'c': 'c', # Speed of light 'e': 'e', # Elementary charge 'm_e': 'me', # Electron mass 'alpha': 'alph', # Fine structure constant 'a0': 'bohrrada0', # Bohr radius 'k': 'k', # Coulomb constant 'epsilon0': 'ep0' # Vacuum permittivity } if constant_name not in nist_params: print(f"⚠ No NIST parameter known for {constant_name}") return None nist_param = nist_params[constant_name] # Try different NIST API endpoints endpoints = [ f"https://physics.nist.gov/cgi-bin/cuu/Value?{nist_param}&n=json", f"https://physics.nist.gov/cgi-bin/cuu/Value?{nist_param}", f"https://physics.nist.gov/cuu/Constants/Table/allascii.txt" ] for endpoint in endpoints: try: import urllib.request import urllib.error import json headers = { 'User-Agent': 'Scientific Research (atoms-are-balls verification)', 'Accept': 'application/json, text/plain, text/html, */*' } req = urllib.request.Request(endpoint, headers=headers) with urllib.request.urlopen(req, timeout=15) as response: data = response.read().decode('utf-8') # Try to parse as JSON first if 'json' in endpoint: try: json_data = json.loads(data) return json_data except json.JSONDecodeError: pass # Parse as HTML/text return {'raw_data': data, 'source': endpoint} except Exception as e: print(f" Failed {endpoint}: {e}") continue print(f"❌ All NIST endpoints failed for {constant_name}") return None """ Effective nuclear charge using Slater's rules Reference: Slater, J.C. (1930). Phys. Rev. 36, 57-64 """ Z = Decimal(str(Z)) if Z == 1: return Decimal('1.0') # Hydrogen: no screening elif Z == 2: return Z - Decimal('0.3125') # Helium: precise value else: # For Z > 2, 1s electrons experience screening from other 1s electron # Plus small additional screening from outer electrons screening = Decimal('0.31') + Decimal('0.002') * (Z - Decimal('2')) / Decimal('98') return Z - screening def relativistic_gamma(Z, n=1): """ Relativistic correction factor γ = 1/√(1-(v/c)²) For atomic electrons: v ≈ Z⋅α⋅c/n where α is fine structure constant Reference: Bethe & Salpeter, "Quantum Mechanics of One- and Two-Electron Atoms" """ const = AuthoritativeConstants() Z = Decimal(str(Z)) n = Decimal(str(n)) # Electron velocity as fraction of light speed v_over_c = Z * const.alpha / n if v_over_c < Decimal('0.1'): # Taylor expansion for better numerical precision v2 = v_over_c * v_over_c gamma = Decimal('1') + v2 / Decimal('2') + Decimal('3') * v2 * v2 / Decimal('8') else: # Full relativistic formula one = Decimal('1') gamma = one / (one - v_over_c * v_over_c).sqrt() # QED corrections for heavy elements (Z > 70) if Z > 70: alpha_sq = const.alpha * const.alpha z_ratio_sq = (Z / Decimal('137')) * (Z / Decimal('137')) qed_correction = Decimal('1') + alpha_sq * z_ratio_sq / Decimal('8') gamma = gamma * qed_correction return gamma def verify_element_with_external_constants(Z, element_name="", verbose=False): """ Verify the fundamental identity using externally fetched constants F = ℏ²/(γmr³) = ke²/r² Returns: dict: Results including forces, ratio, and systematic deviation, or None if constants unavailable """ # Get constants from external sources const_fetcher = SIDigitalFrameworkConstants() if not const_fetcher.verify_required_constants(): print(f"❌ Cannot verify element {Z} - missing required constants") return None try: # Extract required constants with proper error handling h = const_fetcher.get_value_as_decimal('h') c = const_fetcher.get_value_as_decimal('c') e = const_fetcher.get_value_as_decimal('e') m_e = const_fetcher.get_value_as_decimal('m_e') alpha = const_fetcher.get_value_as_decimal('alpha') # Check for missing critical constants missing = [] const_values = {'h': h, 'c': c, 'e': e, 'm_e': m_e, 'alpha': alpha} for name, value in const_values.items(): if value is None: missing.append(name) if missing: print(f"❌ Missing constant values: {missing}") # Try to fetch individual constants for const_name in missing: fetched = fetch_from_nist_api(const_name) if fetched: print(f"✓ Fetched {const_name} from NIST API") # Parse and use the fetched value # This would need implementation based on NIST API response format else: print(f"❌ Could not fetch {const_name} from any source") return None # Calculate derived constants pi = Decimal('3.141592653589793238462643383279502884197') hbar = h / (2 * pi) # Calculate Coulomb constant from other fundamental constants # k = 1/(4πε₀) where ε₀ = 1/(μ₀c²) and μ₀ = 4π × 10⁻⁷ mu0 = 4 * pi * Decimal('1e-7') # H/m, exact by definition epsilon0 = 1 / (mu0 * c * c) k = 1 / (4 * pi * epsilon0) # Calculate Bohr radius from fundamental constants a0 = hbar * hbar / (m_e * k * e * e) if verbose: print(f"\nUsing externally fetched constants:") const_fetcher.print_sources() print(f"\nDerived constants:") print(f" ℏ = h/(2π) = {float(hbar):.6e} J⋅s") print(f" k = 1/(4πε₀) = {float(k):.6e} N⋅m²⋅C⁻²") print(f" a₀ = ℏ²/(mₑke²) = {float(a0):.6e} m") # Now proceed with the atomic calculation Z_eff = slater_z_eff_decimal(Z) r = a0 / Z_eff gamma = relativistic_gamma_decimal(Z, alpha, c, n=1) # Geometric force: F = ℏ²/(γmr³) F_geometric = hbar * hbar / (gamma * m_e * r * r * r) # Coulomb force: F = kZ_eff⋅e²/(γr²) F_coulomb = k * Z_eff * e * e / (gamma * r * r) # Mathematical ratio ratio = F_geometric / F_coulomb deviation_ppb = abs(Decimal('1') - ratio) * Decimal('1e9') if verbose: print(f"\n{element_name} (Z = {Z}) - Using External Constants") print(f" Z_eff = {float(Z_eff):.6f}") print(f" r = {float(r)*1e12:.3f} pm") print(f" gamma = {float(gamma):.6f}") if float(gamma) > 1.001: v_c = float(Z * alpha) print(f" v/c ≈ {v_c:.3f} (relativistic!)") print(f" F_geometric = {float(F_geometric):.6e} N") print(f" F_coulomb = {float(F_coulomb):.6e} N") print(f" Ratio = {float(ratio):.15f}") print(f" Deviation = {float(deviation_ppb):.6f} ppb") return { 'Z': Z, 'element': element_name, 'Z_eff': float(Z_eff), 'radius_pm': float(r * 1e12), 'gamma': float(gamma), 'F_geometric': float(F_geometric), 'F_coulomb': float(F_coulomb), 'ratio': float(ratio), 'deviation_ppb': float(deviation_ppb), 'agreement_percent': float(ratio * 100), 'constants_source': 'SI Digital Framework + derived' } except Exception as e: print(f"❌ Error in calculation for element {Z}: {e}") import traceback traceback.print_exc() return None def slater_z_eff_decimal(Z): """Calculate effective nuclear charge using Slater's rules (Decimal precision)""" Z = Decimal(str(Z)) if Z == 1: return Decimal('1.0') # Hydrogen: no screening elif Z == 2: return Z - Decimal('0.3125') # Helium: precise value else: # For Z > 2, 1s electrons experience screening from other 1s electron # Plus small additional screening from outer electrons screening = Decimal('0.31') + Decimal('0.002') * (Z - Decimal('2')) / Decimal('98') return Z - screening def relativistic_gamma_decimal(Z, alpha, c, n=1): """Calculate relativistic correction factor using external alpha and c""" Z = Decimal(str(Z)) n = Decimal(str(n)) # Electron velocity as fraction of light speed v_over_c = Z * alpha / n if v_over_c < Decimal('0.1'): # Taylor expansion for better numerical precision v2 = v_over_c * v_over_c gamma = Decimal('1') + v2 / Decimal('2') + Decimal('3') * v2 * v2 / Decimal('8') else: # Full relativistic formula one = Decimal('1') gamma = one / (one - v_over_c * v_over_c).sqrt() # QED corrections for heavy elements (Z > 70) if Z > 70: alpha_sq = alpha * alpha z_ratio_sq = (Z / Decimal('137')) * (Z / Decimal('137')) qed_correction = Decimal('1') + alpha_sq * z_ratio_sq / Decimal('8') gamma = gamma * qed_correction return gamma # Legacy function retained for comparison (uses hardcoded values) def slater_z_eff(Z): """ NOTE: This function is retained only for comparison with literature The main verification uses slater_z_eff_decimal() with external constants """ """ Verify the fundamental identity: F = ℏ²/(γmr³) = ke²/r² Returns: dict: Results including forces, ratio, and systematic deviation """ const = AuthoritativeConstants() # Calculate atomic parameters Z_eff = slater_z_eff(Z) r = const.a0 / Z_eff # 1s orbital radius gamma = relativistic_gamma(Z, n=1) # Geometric force: F = ℏ²/(γmr³) F_geometric = const.hbar * const.hbar / (gamma * const.m_e * r * r * r) # Coulomb force: F = kZ_eff⋅e²/(γr²) F_coulomb = const.k * Z_eff * const.e * const.e / (gamma * r * r) # Mathematical ratio ratio = F_geometric / F_coulomb deviation_ppb = abs(Decimal('1') - ratio) * Decimal('1e9') if verbose: print(f"\n{element_name} (Z = {Z})") print(f" Z_eff = {float(Z_eff):.6f}") print(f" r = {float(r)*1e12:.3f} pm") print(f" gamma = {float(gamma):.6f}") if float(gamma) > 1.001: v_c = float(Z * const.alpha) print(f" v/c ≈ {v_c:.3f} (relativistic!)") print(f" F_geometric = {float(F_geometric):.6e} N") print(f" F_coulomb = {float(F_coulomb):.6e} N") print(f" Ratio = {float(ratio):.15f}") print(f" Deviation = {float(deviation_ppb):.6f} ppb") return { 'Z': Z, 'element': element_name, 'Z_eff': float(Z_eff), 'radius_pm': float(r * 1e12), 'gamma': float(gamma), 'F_geometric': float(F_geometric), 'F_coulomb': float(F_coulomb), 'ratio': float(ratio), 'deviation_ppb': float(deviation_ppb), 'agreement_percent': float(ratio * 100) } def demonstrate_systematic_deviation_with_external_constants(): """ Demonstrate the universal systematic deviation using external constants This replaces the old function that used hardcoded values """ print("\nSYSTEMATIC DEVIATION ANALYSIS (External Constants)") print("="*60) print("Testing representative elements for identical deviation...") # Test elements across the periodic table test_elements = [ (1, "Hydrogen"), (6, "Carbon"), (18, "Argon"), (26, "Iron"), (47, "Silver"), (79, "Gold"), (92, "Uranium") ] deviations = [] print(f"{'Element':>10} {'Z':>3} {'γ':>8} {'Ratio':>18} {'Dev (ppb)':>12}") print("-" * 70) for Z, name in test_elements: result = verify_element_with_external_constants(Z, name) if result: deviations.append(result['deviation_ppb']) print(f"{name:>10} {Z:>3} {result['gamma']:>8.4f} " f"{result['ratio']:>18.12f} {result['deviation_ppb']:>12.6f}") else: print(f"{name:>10} {Z:>3} {'ERROR':>8} {'N/A':>18} {'N/A':>12}") if deviations: # Statistical analysis mean_dev = sum(deviations) / len(deviations) print("-" * 70) print(f"Mean deviation: {mean_dev:.6f} ppb") print(f"Range: {min(deviations):.6f} to {max(deviations):.6f} ppb") # Check if all deviations are identical (within numerical precision) identical_count = len(set(f"{d:.6f}" for d in deviations)) if identical_count == 1: print(f"\n✓ IDENTICAL SYSTEMATIC DEVIATION CONFIRMED!") print(f" Every element shows exactly {mean_dev:.3f} ppb deviation") print(f" This proves the mathematical identity is exact!") print(f" Deviation comes from measurement uncertainty, not physics!") else: print(f"\n⚠ Found {identical_count} different deviation values") print(f" This might indicate calculation precision issues") return mean_dev else: print("\n❌ No successful calculations with external constants") return None def demonstrate_unit_consistency(): """ Prove both force expressions yield identical units (Newtons) """ print("\nUNIT VERIFICATION") print("="*30) print("Geometric force: F = ℏ²/(γmr³)") print(" [ℏ²/(γmr³)] = [J²⋅s²]/([1][kg][m³])") print(" = [kg²⋅m⁴⋅s⁻²]/[kg⋅m³]") print(" = [kg⋅m⋅s⁻