194 lines
6.9 KiB
Python
194 lines
6.9 KiB
Python
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
from scipy import constants as const
|
||
|
||
# Core concept: Mass is information projected from higher dimensions
|
||
# As velocity increases, projection angle changes, reducing observable mass
|
||
|
||
# Constants
|
||
c = const.c # speed of light
|
||
hbar = const.hbar
|
||
e = const.e
|
||
k_e = 1/(4*np.pi*const.epsilon_0)
|
||
alpha = const.alpha
|
||
|
||
def classical_gamma(v):
|
||
"""Classical Lorentz factor - mass increases"""
|
||
return 1/np.sqrt(1 - (v/c)**2)
|
||
|
||
def information_projection_factor(v, n_dims=4):
|
||
"""
|
||
Information projection from n_dims to (n_dims-1)
|
||
As v→c, the object rotates out of our dimensional slice
|
||
"""
|
||
# Angle of rotation in higher-dimensional space
|
||
theta = np.arcsin(v/c) # rotation angle out of our 3D slice
|
||
|
||
# Projection factor: how much of the higher-D object we see
|
||
projection = np.cos(theta)**(n_dims-3)
|
||
|
||
return projection
|
||
|
||
def observed_mass(m0, v, n_dims=4):
|
||
"""Mass as seen in our 3D slice of higher-D spacetime"""
|
||
gamma = classical_gamma(v)
|
||
projection = information_projection_factor(v, n_dims)
|
||
|
||
# Key insight: observed mass is rest mass times projection
|
||
# divided by gamma (not multiplied!)
|
||
return m0 * projection / gamma
|
||
|
||
def information_density_2d(E, r):
|
||
"""
|
||
Information density on a 2D surface (from our ℏ² analysis)
|
||
E: energy (information content)
|
||
r: radius (information spread)
|
||
"""
|
||
# From our equation: γ = c²ℏ²/(ke²Er)
|
||
# Information area = ℏ² (quantum of area-information)
|
||
# Information density = E/(πr²) in natural units
|
||
|
||
area = np.pi * r**2
|
||
info_density = E / area
|
||
|
||
# Relate to our gamma factor
|
||
gamma = (c**2 * hbar**2) / (k_e * e**2 * E * r)
|
||
|
||
return info_density, gamma
|
||
|
||
# Visualization
|
||
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 10))
|
||
|
||
# 1. Mass vs velocity comparison
|
||
velocities = np.linspace(0, 0.999*c, 1000)
|
||
m0 = 1 # normalized rest mass
|
||
|
||
classical_masses = m0 * classical_gamma(velocities)
|
||
info_masses_3d = observed_mass(m0, velocities, n_dims=3)
|
||
info_masses_4d = observed_mass(m0, velocities, n_dims=4)
|
||
info_masses_5d = observed_mass(m0, velocities, n_dims=5)
|
||
|
||
ax1.plot(velocities/c, classical_masses, 'r-', label='Classical (m₀γ)', linewidth=2)
|
||
ax1.plot(velocities/c, info_masses_3d, 'b--', label='Info projection (3D→2D)', linewidth=2)
|
||
ax1.plot(velocities/c, info_masses_4d, 'g--', label='Info projection (4D→3D)', linewidth=2)
|
||
ax1.plot(velocities/c, info_masses_5d, 'm--', label='Info projection (5D→4D)', linewidth=2)
|
||
ax1.set_xlabel('v/c')
|
||
ax1.set_ylabel('Observed mass / m₀')
|
||
ax1.set_title('Classical vs Information Projection Theory')
|
||
ax1.legend()
|
||
ax1.grid(True, alpha=0.3)
|
||
ax1.set_ylim(0, 5)
|
||
|
||
# 2. Projection factor visualization
|
||
projections_3d = information_projection_factor(velocities, n_dims=3)
|
||
projections_4d = information_projection_factor(velocities, n_dims=4)
|
||
projections_5d = information_projection_factor(velocities, n_dims=5)
|
||
|
||
ax2.plot(velocities/c, projections_3d, 'b-', label='3D→2D', linewidth=2)
|
||
ax2.plot(velocities/c, projections_4d, 'g-', label='4D→3D', linewidth=2)
|
||
ax2.plot(velocities/c, projections_5d, 'm-', label='5D→4D', linewidth=2)
|
||
ax2.set_xlabel('v/c')
|
||
ax2.set_ylabel('Projection factor')
|
||
ax2.set_title('Information Shadow vs Velocity')
|
||
ax2.legend()
|
||
ax2.grid(True, alpha=0.3)
|
||
|
||
# 3. Connection to quantum time dilation
|
||
# Show how projection relates to our γ factor
|
||
energies = np.logspace(-3, 6, 100) * const.eV # meV to MeV
|
||
r_bohr = 0.529e-10 # Bohr radius
|
||
|
||
info_densities = []
|
||
gammas = []
|
||
|
||
for E in energies:
|
||
density, gamma = information_density_2d(E, r_bohr)
|
||
info_densities.append(density)
|
||
gammas.append(gamma)
|
||
|
||
ax3.loglog(energies/const.eV, gammas, 'k-', linewidth=2)
|
||
ax3.axhline(y=1, color='r', linestyle='--', label='γ = 1 (classical limit)')
|
||
ax3.axvline(x=511e3, color='b', linestyle='--', label='Electron rest mass')
|
||
ax3.set_xlabel('Energy (eV)')
|
||
ax3.set_ylabel('γ (time dilation factor)')
|
||
ax3.set_title('Quantum Time Dilation as Information Spreading')
|
||
ax3.legend()
|
||
ax3.grid(True, alpha=0.3)
|
||
|
||
# 4. 2D plane visualization
|
||
# Two observers running orthogonally on a plane
|
||
t_points = np.linspace(0, 1, 100)
|
||
v_max = 0.9 * c
|
||
|
||
# Observer trajectories
|
||
x1 = v_max * t_points
|
||
y1 = np.zeros_like(t_points)
|
||
x2 = np.zeros_like(t_points)
|
||
y2 = v_max * t_points
|
||
|
||
# Their observed masses
|
||
m1 = observed_mass(m0, v_max * t_points, n_dims=4)
|
||
m2 = observed_mass(m0, v_max * t_points, n_dims=4)
|
||
|
||
ax4.scatter(x1[::5]/c, y1[::5], s=100*m1[::5], c=t_points[::5],
|
||
cmap='Reds', alpha=0.6, label='Observer 1')
|
||
ax4.scatter(x2[::5], y2[::5]/c, s=100*m2[::5], c=t_points[::5],
|
||
cmap='Blues', alpha=0.6, label='Observer 2')
|
||
ax4.arrow(0, 0, 0.5, 0, head_width=0.05, head_length=0.05, fc='red', ec='red')
|
||
ax4.arrow(0, 0, 0, 0.5, head_width=0.05, head_length=0.05, fc='blue', ec='blue')
|
||
ax4.set_xlabel('x position (light-seconds)')
|
||
ax4.set_ylabel('y position (light-seconds)')
|
||
ax4.set_title('Orthogonal Observers: Size = Observed Mass')
|
||
ax4.set_xlim(-0.1, 1)
|
||
ax4.set_ylim(-0.1, 1)
|
||
ax4.legend()
|
||
ax4.grid(True, alpha=0.3)
|
||
|
||
plt.tight_layout()
|
||
plt.savefig('information_projection_theory.png', dpi=150)
|
||
|
||
# Key calculations
|
||
print("=== INFORMATION PROJECTION THEORY ===")
|
||
print("\nAt v = 0.9c:")
|
||
v_test = 0.9 * c
|
||
gamma_classical = classical_gamma(v_test)
|
||
proj_4d = information_projection_factor(v_test, n_dims=4)
|
||
m_observed = observed_mass(m0, v_test, n_dims=4)
|
||
|
||
print(f"Classical γ = {gamma_classical:.3f}")
|
||
print(f"Classical mass increase: m = {gamma_classical:.3f} m₀")
|
||
print(f"Information projection (4D→3D): {proj_4d:.3f}")
|
||
print(f"Our theory mass: m = {m_observed:.3f} m₀")
|
||
print(f"Mass DECREASES by factor of {1/m_observed:.3f}!")
|
||
|
||
# Connection to E=mc²
|
||
print("\n=== E=mc² AS INFORMATION ON 2D SURFACE ===")
|
||
print("If mass is information shadow, then E=mc² means:")
|
||
print("Energy = (Information content) × (Maximum info processing rate)²")
|
||
print("Where c² is the speed of information propagation squared")
|
||
print("\nThis explains why E ∝ c²:")
|
||
print("- c: speed of 1D information (along a line)")
|
||
print("- c²: speed of 2D information (on a surface)")
|
||
print("- Energy spreads as 2D information on spacetime surfaces!")
|
||
|
||
# Superconductivity connection
|
||
print("\n=== SUPERCONDUCTIVITY CONNECTION ===")
|
||
E_cooper = 1e-3 * const.eV # 1 meV Cooper pair binding
|
||
r_cooper = 1000e-10 # 1000 Å coherence length
|
||
_, gamma_cooper = information_density_2d(E_cooper, r_cooper)
|
||
|
||
print(f"Cooper pair: E = 1 meV, r = 1000 Å")
|
||
print(f"γ = {gamma_cooper:.2e}")
|
||
print("Electrons are 'frozen' in higher dimensions!")
|
||
print("No projection into time dimension = no resistance!")
|
||
|
||
# Mathematical framework
|
||
print("\n=== MATHEMATICAL FRAMEWORK ===")
|
||
print("1. Mass is information projected from n-dimensions to (n-1)")
|
||
print("2. Projection factor: P(v) = cos^(n-3)(arcsin(v/c))")
|
||
print("3. Observed mass: m_obs = m₀ × P(v) / γ(v)")
|
||
print("4. At v→c: P→0, so m_obs→0 (not ∞!)")
|
||
print("5. Information cannot be destroyed, only rotated out of view")
|
||
|
||
plt.show()
|