32 lines
1.6 KiB
Python
32 lines
1.6 KiB
Python
import math
|
||
from scipy import constants as const
|
||
|
||
# Konstanten aus scipy.constants
|
||
c = const.c # Lichtgeschwindigkeit in m/s
|
||
hbar= const.hbar # ℏ in J·s
|
||
e = const.e # Elementarladung in Coulomb
|
||
k_e = 1/(4*math.pi*const.epsilon_0) # Coulomb-Konstante in N·m²/C²
|
||
|
||
def gamma_quantum_time(E_joule, r_meter):
|
||
"""Berechnet γ = c^2 ℏ^2 / (k e^2 E r)."""
|
||
return c**2 * hbar**2 / (k_e * e**2 * E_joule * r_meter)
|
||
|
||
# Beispielszenarien (E in eV, r in m):
|
||
scenarios = [
|
||
("Wasserstoff Grundzustand", 13.6, 0.529e-10), # E=13,6 eV, r = 0,529 Å
|
||
("Wasserstoff angeregt (n=2)", 3.4, 2.116e-10), # E≈3,4 eV, r≈2,116 Å (n=2)
|
||
("Chemische Bindung (~C–H)", 4.5, 1.10e-10), # E≈4-5 eV, r≈1,1 Å
|
||
("Thermische Energie (300 K)", 0.025, 5.0e-10), # E≈0,025 eV, r≈5 Å (Raumtemperatur, Atomgitter)
|
||
("Kernbindung (typisch)", 8.0e6, 5.0e-15), # E≈8 MeV, r≈5 fm (Bindung in mittelschwerem Kern)
|
||
("Starke Kernkraft (extrem)", 2.0e8, 1.0e-15), # E≈200 MeV, r=1 fm (starke Bindung im Kern)
|
||
("H–Anti-H Annihilation", 1.88e9, 0.529e-10), # E≈1,88 GeV, r=0,529 Å (H mit Anti-H Abstand ~ Bohr)
|
||
("Kritischer Punkt (γ=1)", 5.11e5, 0.529e-10) # E=511 keV, r=0,529 Å (Elektron-Ruheenergie)
|
||
]
|
||
|
||
print(f"{'Szenario':30} | {'Energie E':>15} | {'Abstand r':>12} | γ (berechnet)")
|
||
print("-"*75)
|
||
for name, E_eV, r in scenarios:
|
||
E_J = E_eV * const.e # eV -> Joule
|
||
gamma_val = gamma_quantum_time(E_J, r)
|
||
print(f"{name:30} | {E_eV:9.2e} eV | {r:8.2e} m | {gamma_val:9.3e}")
|