import math from scipy import constants as const # Konstanten aus scipy.constants c = const.c # Lichtgeschwindigkeit in m/s hbar= const.hbar # ℏ in J·s e = const.e # Elementarladung in Coulomb k_e = 1/(4*math.pi*const.epsilon_0) # Coulomb-Konstante in N·m²/C² def gamma_quantum_time(E_joule, r_meter): """Berechnet γ = c^2 ℏ^2 / (k e^2 E r).""" return c**2 * hbar**2 / (k_e * e**2 * E_joule * r_meter) # Beispielszenarien (E in eV, r in m): scenarios = [ ("Wasserstoff Grundzustand", 13.6, 0.529e-10), # E=13,6 eV, r = 0,529 Å ("Wasserstoff angeregt (n=2)", 3.4, 2.116e-10), # E≈3,4 eV, r≈2,116 Å (n=2) ("Chemische Bindung (~C–H)", 4.5, 1.10e-10), # E≈4-5 eV, r≈1,1 Å ("Thermische Energie (300 K)", 0.025, 5.0e-10), # E≈0,025 eV, r≈5 Å (Raumtemperatur, Atomgitter) ("Kernbindung (typisch)", 8.0e6, 5.0e-15), # E≈8 MeV, r≈5 fm (Bindung in mittelschwerem Kern) ("Starke Kernkraft (extrem)", 2.0e8, 1.0e-15), # E≈200 MeV, r=1 fm (starke Bindung im Kern) ("H–Anti-H Annihilation", 1.88e9, 0.529e-10), # E≈1,88 GeV, r=0,529 Å (H mit Anti-H Abstand ~ Bohr) ("Kritischer Punkt (γ=1)", 5.11e5, 0.529e-10) # E=511 keV, r=0,529 Å (Elektron-Ruheenergie) ] print(f"{'Szenario':30} | {'Energie E':>15} | {'Abstand r':>12} | γ (berechnet)") print("-"*75) for name, E_eV, r in scenarios: E_J = E_eV * const.e # eV -> Joule gamma_val = gamma_quantum_time(E_J, r) print(f"{name:30} | {E_eV:9.2e} eV | {r:8.2e} m | {gamma_val:9.3e}")