import numpy as np import scipy.constants as const from scipy.optimize import fsolve # Physical constants in SI units c = const.c # speed of light: 299792458 m/s e = const.e # elementary charge: 1.602176634e-19 C k = 1 / (4 * np.pi * const.epsilon_0) # Coulomb constant: 8.9875517923e9 N⋅m²/C² hbar = const.hbar # reduced Planck constant: 1.054571817e-34 J⋅s m_e = const.m_e # electron mass: 9.1093837015e-31 kg m_p = const.m_p # proton mass: 1.67262192369e-27 kg alpha = const.alpha # fine structure constant: ~1/137 print("=== DIMENSIONAL ANALYSIS ===") print(f"ℏ = {hbar:.6e} J⋅s = kg⋅m²/s") print(f"ℏ² = {hbar**2:.6e} J²⋅s² = kg²⋅m⁴/s²") print(f"Units of ℏ²: [M²L⁴T⁻²]") print(f"\nInteresting: L⁴ = (L²)² - suggesting 2D area squared!") print(f"So ℏ² relates mass², area², and time² fundamentally") print("\n=== OUR EQUATION: c² = ke²γEr/(ℏ²) ===") print("Rearranged forms:") print("γ = c²ℏ²/(ke²Er)") print("E = c²ℏ²/(ke²γr)") print("r = c²ℏ²/(ke²γE)") # Case 1: Hydrogen-antihydrogen annihilation print("\n=== CASE 1: H + anti-H annihilation ===") E_annihilation = 2 * (m_e + m_p) * c**2 # Total rest mass energy r_bohr = const.physical_constants['Bohr radius'][0] # 5.29e-11 m # Solve for gamma at Bohr radius gamma_annihilation = (c**2 * hbar**2) / (k * e**2 * E_annihilation * r_bohr) v_from_gamma = c * np.sqrt(1 - 1/gamma_annihilation**2) if gamma_annihilation > 1 else 0 print(f"Total annihilation energy: {E_annihilation:.6e} J = {E_annihilation/const.eV:.3f} eV") print(f"At Bohr radius r = {r_bohr:.3e} m:") print(f" γ = {gamma_annihilation:.6f}") print(f" Implied velocity: {v_from_gamma/c:.6f}c") # Case 2: Ground state hydrogen (binding energy) print("\n=== CASE 2: Ground state hydrogen ===") E_binding = 13.6 * const.eV # Hydrogen ionization energy gamma_ground = (c**2 * hbar**2) / (k * e**2 * E_binding * r_bohr) print(f"Binding energy: {E_binding:.6e} J = 13.6 eV") print(f"γ = {gamma_ground:.3e}") print(f"This huge γ suggests we're probing quantum regime!") # Case 3: What if we set γ = 1 (non-relativistic)? print("\n=== CASE 3: Non-relativistic case (γ = 1) ===") gamma_nr = 1 E_nr = (c**2 * hbar**2) / (k * e**2 * gamma_nr * r_bohr) print(f"Energy when γ = 1: {E_nr:.6e} J = {E_nr/const.eV:.3f} eV") print(f"This is {E_nr/E_binding:.1f}× the actual binding energy") # Explore the meaning of the equation parts print("\n=== EQUATION COMPONENTS ===") quantum_term = hbar**2 em_term = k * e**2 print(f"Quantum term (ℏ²): {quantum_term:.6e} J²⋅s²") print(f"EM term (ke²): {em_term:.6e} J⋅m") print(f"Ratio c²ℏ²/(ke²) = {(c**2 * quantum_term)/em_term:.6e} J⋅m") print(f"This has units of [Energy × Length]") # The fine structure connection print("\n=== FINE STRUCTURE CONSTANT CONNECTION ===") # α = ke²/(ℏc) in SI units calculated_alpha = (k * e**2) / (hbar * c) print(f"α calculated: {calculated_alpha:.10f}") print(f"α known: {alpha:.10f}") print(f"Our equation can be rewritten using α:") print(f"γ = c/(αEr/ℏ)") # Exploring unit independence print("\n=== UNIT INDEPENDENCE CHECK ===") # In natural units where c = ℏ = 1 print("In natural units (c = ℏ = 1):") print("γ = 1/(αEr)") print("This shows γ depends only on:") print(" - The fine structure constant α (dimensionless)") print(" - Energy × distance (action units)") # What this means for spacetime print("\n=== SPACETIME INTERPRETATION ===") print("Since γ = dt/dτ (time dilation factor):") print("Our equation suggests coordinate time / proper time = c²ℏ²/(ke²Er)") print("\nThis means time dilation emerges from the balance between:") print(" - Quantum action (ℏ²) pushing toward uncertainty") print(" - EM binding (ke²Er) pulling toward classical behavior") print("\nAt high energies or small distances, γ becomes huge,") print("suggesting extreme time dilation in the quantum regime!") # Function to explore different scenarios def explore_scenario(E, r, label): gamma = (c**2 * hbar**2) / (k * e**2 * E * r) print(f"\n{label}:") print(f" E = {E/const.eV:.3e} eV, r = {r:.3e} m") print(f" γ = {gamma:.3e}") if gamma > 1 and gamma < 1e6: v = c * np.sqrt(1 - 1/gamma**2) print(f" v/c = {v/c:.6f}") # Explore various energy/distance scales print("\n=== EXPLORING DIFFERENT SCALES ===") explore_scenario(1*const.eV, 1e-9, "1 eV at 1 nm") explore_scenario(1*const.eV*1000, 1e-12, "1 keV at 1 pm") explore_scenario(511*const.eV*1000, const.physical_constants['classical electron radius'][0], "Electron rest mass at classical radius") explore_scenario(const.m_e * c**2, const.physical_constants['Compton wavelength'][0]/(2*np.pi), "Electron at reduced Compton wavelength")