mcp: add upsert_and_embed tool; implement warm_cache with filters + embeddings via libKI; DAL: make memory_chunks upsert unique by (item,seq) with SQL and in-memory; DB: add unique index on (item,seq)
This commit is contained in:
parent
a0f5dd8b4f
commit
6fd938d4f3
|
|
@ -28,6 +28,9 @@ CREATE TABLE IF NOT EXISTS memory_chunks (
|
|||
content_tsv tsvector GENERATED ALWAYS AS (to_tsvector('english', content)) STORED
|
||||
);
|
||||
|
||||
-- Ensure single row per (item,seq)
|
||||
CREATE UNIQUE INDEX IF NOT EXISTS ux_chunks_item_seq ON memory_chunks(item_id, seq);
|
||||
|
||||
CREATE TABLE IF NOT EXISTS embeddings (
|
||||
id BIGSERIAL PRIMARY KEY,
|
||||
chunk_id UUID NOT NULL REFERENCES memory_chunks(id) ON DELETE CASCADE,
|
||||
|
|
|
|||
|
|
@ -55,6 +55,7 @@ CREATE TABLE IF NOT EXISTS memory_chunks (
|
|||
created_at TIMESTAMPTZ NOT NULL DEFAULT now()
|
||||
);
|
||||
CREATE INDEX IF NOT EXISTS chunks_item_idx ON memory_chunks(item_id, ord);
|
||||
CREATE UNIQUE INDEX IF NOT EXISTS ux_chunks_item_ord ON memory_chunks(item_id, ord);
|
||||
|
||||
-- Embeddings: one per chunk (per model)
|
||||
CREATE TABLE IF NOT EXISTS embeddings (
|
||||
|
|
@ -84,4 +85,3 @@ DROP TRIGGER IF EXISTS trg_bump_revision ON memory_items;
|
|||
CREATE TRIGGER trg_bump_revision
|
||||
BEFORE UPDATE ON memory_items
|
||||
FOR EACH ROW EXECUTE FUNCTION bump_revision();
|
||||
|
||||
|
|
|
|||
|
|
@ -502,15 +502,20 @@ std::vector<std::string> PgDal::upsertChunks(const std::vector<ChunkRow>& chunks
|
|||
if (stored.item_id.empty()) {
|
||||
continue;
|
||||
}
|
||||
if (stored.id.empty()) {
|
||||
stored.id = allocateId(nextChunkId_, "chunk_");
|
||||
}
|
||||
|
||||
chunks_[stored.id] = stored;
|
||||
// Enforce uniqueness by (item_id, ord) in memory as well
|
||||
auto& bucket = chunksByItem_[stored.item_id];
|
||||
if (!idsContains(bucket, stored.id)) {
|
||||
bucket.push_back(stored.id);
|
||||
std::string existingId;
|
||||
for (const auto &cid : bucket) {
|
||||
auto it = chunks_.find(cid);
|
||||
if (it != chunks_.end() && it->second.ord == stored.ord) { existingId = cid; break; }
|
||||
}
|
||||
if (existingId.empty()) {
|
||||
if (stored.id.empty()) stored.id = allocateId(nextChunkId_, "chunk_");
|
||||
bucket.push_back(stored.id);
|
||||
} else {
|
||||
stored.id = existingId;
|
||||
}
|
||||
chunks_[stored.id] = stored;
|
||||
ids.push_back(stored.id);
|
||||
}
|
||||
|
||||
|
|
@ -524,17 +529,16 @@ std::vector<std::string> PgDal::sqlUpsertChunks(const std::vector<ChunkRow>& chu
|
|||
QSqlDatabase db = database();
|
||||
QSqlQuery query(db);
|
||||
query.prepare(QStringLiteral(
|
||||
"INSERT INTO memory_chunks (id, item_id, seq, content) "
|
||||
"VALUES (COALESCE(NULLIF(:id, '')::uuid, gen_random_uuid()), "
|
||||
" :item_id::uuid, :seq, :content) "
|
||||
"ON CONFLICT (id) DO UPDATE SET seq = EXCLUDED.seq, content = EXCLUDED.content "
|
||||
"INSERT INTO memory_chunks (item_id, seq, content, id) "
|
||||
"VALUES (:item_id::uuid, :seq, :content, COALESCE(NULLIF(:id, '')::uuid, gen_random_uuid())) "
|
||||
"ON CONFLICT (item_id, seq) DO UPDATE SET content = EXCLUDED.content "
|
||||
"RETURNING id::text;"));
|
||||
|
||||
for (const auto& chunk : chunks) {
|
||||
query.bindValue(QStringLiteral(":id"), QString::fromStdString(chunk.id));
|
||||
query.bindValue(QStringLiteral(":item_id"), QString::fromStdString(chunk.item_id));
|
||||
query.bindValue(QStringLiteral(":seq"), chunk.ord);
|
||||
query.bindValue(QStringLiteral(":content"), QString::fromStdString(chunk.text));
|
||||
query.bindValue(QStringLiteral(":id"), QString::fromStdString(chunk.id));
|
||||
|
||||
if (!query.exec() || !query.next()) {
|
||||
throw std::runtime_error(query.lastError().text().toStdString());
|
||||
|
|
|
|||
|
|
@ -340,6 +340,7 @@ struct ParsedItem {
|
|||
std::vector<std::string> tags;
|
||||
std::vector<float> embedding;
|
||||
std::string rawJson;
|
||||
std::string metadataJson;
|
||||
};
|
||||
|
||||
inline std::vector<ParsedItem> parse_items(const std::string& json) {
|
||||
|
|
@ -351,6 +352,7 @@ inline std::vector<ParsedItem> parse_items(const std::string& json) {
|
|||
item.text = extract_string_field(obj, "text");
|
||||
item.tags = parse_string_array(obj, "tags");
|
||||
item.embedding = parse_float_array(obj, "embedding");
|
||||
if (auto meta = extract_json_value(obj, "metadata")) item.metadataJson = *meta; else item.metadataJson = "{}";
|
||||
items.push_back(std::move(item));
|
||||
}
|
||||
return items;
|
||||
|
|
@ -781,3 +783,49 @@ inline std::string warm_cache(const std::string& reqJson) {
|
|||
}
|
||||
|
||||
} // namespace Handlers
|
||||
/**
|
||||
* upsert_and_embed
|
||||
* Request: { namespace, model?, items: [{id?, text, tags?, metadata?}] }
|
||||
* Response: { upserted, embedded }
|
||||
*/
|
||||
inline std::string upsert_and_embed(const std::string& reqJson) {
|
||||
const std::string nsName = detail::extract_string_field(reqJson, "namespace");
|
||||
if (nsName.empty()) return detail::error_response("bad_request","namespace is required");
|
||||
auto nsRow = detail::database().ensureNamespace(nsName);
|
||||
if (!nsRow) return detail::error_response("internal_error","failed to ensure namespace");
|
||||
|
||||
auto items = detail::parse_items(reqJson);
|
||||
if (items.empty()) return detail::error_response("bad_request","items array must contain at least one entry");
|
||||
std::string model = detail::extract_string_field(reqJson, "model");
|
||||
|
||||
// Upsert items first and collect texts/ids
|
||||
std::vector<std::string> itemIds; itemIds.reserve(items.size());
|
||||
std::vector<std::string> texts; texts.reserve(items.size());
|
||||
for (auto &it : items) {
|
||||
ki::ItemRow row; row.id = it.id; row.namespace_id = nsRow->id; row.text = it.text;
|
||||
row.tags = it.tags; row.revision = 1; row.metadata_json = it.metadataJson.empty()?"{}":it.metadataJson; row.content_json = it.rawJson;
|
||||
const std::string id = detail::database().upsertItem(row);
|
||||
itemIds.push_back(id); texts.push_back(it.text);
|
||||
}
|
||||
|
||||
// Embed via libKI
|
||||
KI::KIClient client; KI::OllamaProvider provider; client.setProvider(&provider);
|
||||
KI::KIEmbedOptions opts; if (!model.empty()) opts.model = QString::fromStdString(model);
|
||||
QStringList qtexts; for (auto &t : texts) qtexts.push_back(QString::fromStdString(t));
|
||||
QEventLoop loop; QFuture<KI::KIEmbeddingResult> fut = client.embed(qtexts, opts);
|
||||
QFutureWatcher<KI::KIEmbeddingResult> watcher; QObject::connect(&watcher, &QFutureWatcher<KI::KIEmbeddingResult>::finished, &loop, &QEventLoop::quit); watcher.setFuture(fut); loop.exec();
|
||||
const KI::KIEmbeddingResult result = watcher.result();
|
||||
|
||||
// Upsert chunks + embeddings (ord=0)
|
||||
int embedded = 0;
|
||||
const int n = std::min((int)itemIds.size(), result.vectors.size());
|
||||
for (int i = 0; i < n; ++i) {
|
||||
ki::ChunkRow chunk; chunk.item_id = itemIds[(size_t)i]; chunk.ord = 0; chunk.text = texts[(size_t)i];
|
||||
auto chunkIds = detail::database().upsertChunks(std::vector<ki::ChunkRow>{chunk}); if (chunkIds.empty()) continue;
|
||||
ki::EmbeddingRow emb; emb.chunk_id = chunkIds.front(); emb.model = result.model.toStdString(); emb.dim = result.vectors[i].size();
|
||||
emb.vector.assign(result.vectors[i].begin(), result.vectors[i].end());
|
||||
detail::database().upsertEmbeddings(std::vector<ki::EmbeddingRow>{emb}); embedded++;
|
||||
}
|
||||
|
||||
std::ostringstream os; os << "{\"upserted\":" << itemIds.size() << ",\"embedded\":" << embedded << "}"; return os.str();
|
||||
}
|
||||
|
|
|
|||
|
|
@ -11,6 +11,7 @@ inline void register_default_tools(KomMcpServer& server) {
|
|||
server.registerTool("kom.memory.v1.embed_text", Handlers::embed_text);
|
||||
server.registerTool("kom.memory.v1.upsert_memory", Handlers::upsert_memory);
|
||||
server.registerTool("kom.memory.v1.search_memory", Handlers::search_memory);
|
||||
server.registerTool("kom.memory.v1.upsert_and_embed", Handlers::upsert_and_embed);
|
||||
server.registerTool("kom.memory.v1.warm_cache", Handlers::warm_cache);
|
||||
server.registerTool("kom.local.v1.backup.export_encrypted", Handlers::backup_export_encrypted);
|
||||
server.registerTool("kom.local.v1.backup.import_encrypted", Handlers::backup_import_encrypted);
|
||||
|
|
|
|||
|
|
@ -365,6 +365,41 @@
|
|||
"additionalProperties": false
|
||||
}
|
||||
},
|
||||
"upsert_and_embed": {
|
||||
"description": "Upsert items and compute embeddings for each item (ord=0 chunk).",
|
||||
"input": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"namespace": { "type": "string" },
|
||||
"model": { "type": "string" },
|
||||
"items": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"id": { "type": "string" },
|
||||
"text": { "type": "string" },
|
||||
"tags": { "$ref": "#/$defs/stringList" },
|
||||
"metadata": { "type": "object" }
|
||||
},
|
||||
"required": ["text"],
|
||||
"additionalProperties": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": ["namespace","items"],
|
||||
"additionalProperties": false
|
||||
},
|
||||
"output": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"upserted": { "type": "integer" },
|
||||
"embedded": { "type": "integer" }
|
||||
},
|
||||
"required": ["upserted","embedded"],
|
||||
"additionalProperties": false
|
||||
}
|
||||
},
|
||||
"kom.local.v1.backup.export_encrypted": {
|
||||
"description": "Queue an encrypted backup export for the requested namespaces.",
|
||||
"input": {
|
||||
|
|
|
|||
Loading…
Reference in New Issue