# Xilope Production Environment - MCP Browser Guide Welcome to Xilope's production MCP Browser setup! This environment provides integrated access to both MCP tools and the Claude Memory (cmem) system. ## Production Architecture ### Memory Storage Integration - **Local Storage**: `/mnt/data/claude/claude/.mcp-memory/` - **cmem Integration**: Bidirectional sync via `/mnt/data/claude/claude/bin/cmem` - **Identity-Based**: Each project gets separate memory space - **Persistent**: Memory survives across AI assistant sessions ### Built-in Servers Available 1. **Memory Server** (`builtin:memory::`): - `task_add`, `task_list`, `task_update` - Task management with cmem sync - `decision_add` - Decision tracking with reasoning - `pattern_add`, `pattern_resolve` - Learning pattern management - `knowledge_add`, `knowledge_get` - Fact storage and retrieval - `project_switch` - Switch between project contexts - `memory_summary` - Get overview of stored information 2. **Screen Server** (`builtin:screen::`): - `create_session`, `execute`, `peek` - GNU screen management - `list_sessions`, `kill_session` - Session lifecycle - `enable_multiuser`, `attach_multiuser`, `add_user` - Collaboration 3. **Pattern Server** (`builtin:patterns::`): - `add_pattern`, `list_patterns` - Auto-response pattern management - `test_pattern`, `execute_pattern` - Pattern execution 4. **Onboarding Server** (`builtin:onboarding::`): - `onboarding` - Identity-aware instructions - `onboarding_list`, `onboarding_delete`, `onboarding_export` - Management ## Production Workflows ### Starting a Session ```python # Check what servers are available mcp_discover(jsonpath="$.servers[*].name") # List all memory tools for task management mcp_discover(jsonpath="$.tools[?(@.name =~ /memory|task/)]") # Check current project context mcp_call( method="tools/call", params={ "name": "builtin:memory::memory_summary", "arguments": {} } ) ``` ### Task Management with cmem Sync ```python # Add a new task (automatically syncs to cmem) mcp_call( method="tools/call", params={ "name": "builtin:memory::task_add", "arguments": { "content": "Implement feature X", "priority": "high", "assignee": "next-ai" } } ) # List active tasks mcp_call( method="tools/call", params={ "name": "builtin:memory::task_list", "arguments": {"status": "pending"} } ) # Update task status (syncs completion to cmem) mcp_call( method="tools/call", params={ "name": "builtin:memory::task_update", "arguments": { "task_id": "abc123", "status": "completed" } } ) ``` ### Decision and Pattern Management ```python # Record important decisions (synced to cmem) mcp_call( method="tools/call", params={ "name": "builtin:memory::decision_add", "arguments": { "choice": "Use Docker for deployment", "reasoning": "Simplifies environment management", "alternatives": ["Native install", "VM deployment"] } } ) # Add learning patterns (synced to cmem) mcp_call( method="tools/call", params={ "name": "builtin:memory::pattern_add", "arguments": { "pattern": "Always test before commit", "description": "Run full test suite before any git commit", "priority": "high" } } ) ``` ### Screen Session Management ```python # Create a development session mcp_call( method="tools/call", params={ "name": "builtin:screen::create_session", "arguments": { "session_name": "development", "working_directory": "/mnt/data/claude/claude" } } ) # Execute commands in session mcp_call( method="tools/call", params={ "name": "builtin:screen::execute", "arguments": { "session_name": "development", "command": "git status" } } ) # Peek at session output mcp_call( method="tools/call", params={ "name": "builtin:screen::peek", "arguments": {"session_name": "development"} } ) ``` ### Project Context Switching ```python # Switch to different project memory space mcp_call( method="tools/call", params={ "name": "builtin:memory::project_switch", "arguments": {"project_name": "mcp-browser"} } ) # Use onboarding for project-specific instructions mcp_call( method="tools/call", params={ "name": "builtin:onboarding::onboarding", "arguments": { "identity": "mcp-browser", "instructions": "Focus on context optimization and AI-first development" } } ) ``` ## cmem Integration Details ### Memory Storage Structure ``` /mnt/data/claude/claude/.mcp-memory/ ├── default/ # Default project space │ ├── tasks.json # Task storage │ ├── decisions.json # Decision history │ ├── patterns.json # Learning patterns │ └── knowledge.json # Knowledge base ├── mcp-browser/ # Project-specific space └── [other-projects]/ # Additional projects ``` ### cmem Wrapper - **Location**: `/mnt/data/claude/claude/bin/cmem` - **Function**: Wraps `/usr/local/bin/cmem` with proper directory context - **Integration**: Automatic bidirectional sync with MCP memory server - **Commands**: `cmem handoff`, `cmem task add`, `cmem pattern add`, etc. ### Sync Behavior - **Automatic**: All memory operations sync to cmem in background - **Graceful**: If cmem unavailable, operations continue locally - **Identity-Aware**: Each project gets separate cmem context - **Bidirectional**: Changes in either system propagate to the other ## Production Best Practices 1. **Always check memory summary** at start of session 2. **Use task management** to track work across AI sessions 3. **Record decisions** with reasoning for future reference 4. **Create patterns** to capture effective approaches 5. **Switch project contexts** when working on different codebases 6. **Use screen sessions** for persistent development environments ## Error Handling If cmem sync fails: - Operations continue with local storage - Sync retries automatically when cmem becomes available - No data loss occurs during temporary cmem unavailability This production setup ensures seamless AI assistant transitions while maintaining full project context and memory across sessions.