# MCP Browser A generic, minimalistic MCP (Model Context Protocol) browser that provides an abstract interface for AI systems to interact with MCP servers with optimized context usage. ## Overview MCP Browser acts as a smart proxy between AI systems and MCP servers, providing: - **Generic JSON-RPC interface**: Single `call()` method for all operations - **Context optimization**: Sparse mode to minimize initial tool exposure - **Tool discovery**: Dynamic exploration of available tools via JSONPath - **Automatic routing**: Transparent routing to appropriate MCP servers - **Built-in servers**: Automatically starts useful MCP servers (screen, memory, patterns, onboarding) ## Key Features 1. **Minimalistic API** - `call(jsonrpc_object)`: Execute any JSON-RPC call - `discover(jsonpath)`: Explore available tools and their schemas - `onboarding(identity)`: Get/set identity-specific instructions 2. **Context Optimization** - Only exposes 3 essential tools initially in sparse mode - Tools are loaded on-demand to minimize context usage - Full tool descriptions cached but not exposed until needed 3. **Generic Design** - Protocol-agnostic (works with any MCP server) - No hardcoded tool knowledge - Configuration-driven server management 4. **Built-in Servers** - **Screen**: GNU screen session management for persistent processes - **Memory**: Project memory, tasks, decisions, and knowledge management - **Patterns**: Auto-response pattern management for automation - **Onboarding**: Identity-aware onboarding for AI contexts ## Architecture ``` mcp-browser/ ├── mcp_browser/ │ ├── __init__.py │ ├── proxy.py # Main MCP proxy │ ├── server.py # MCP server management │ ├── multi_server.py # Multi-server manager │ ├── registry.py # Tool registry and discovery │ ├── filter.py # Message filtering and sparse mode │ ├── buffer.py # JSON-RPC message buffering │ └── config.py # Configuration management ├── mcp_servers/ # Built-in MCP servers │ ├── base.py # Base server implementation │ ├── screen/ # Screen session management │ ├── memory/ # Memory and context management │ ├── pattern_manager/ # Pattern automation │ └── onboarding/ # Identity-aware onboarding ├── tests/ ├── docs/ └── config/ └── default.yaml # Default configuration ``` ## Usage ```python from mcp_browser import MCPBrowser # Initialize browser (built-in servers start automatically) async with MCPBrowser() as browser: # Execute any JSON-RPC call response = await browser.call({ "jsonrpc": "2.0", "id": 1, "method": "tools/list", "params": {} }) # Discover tool details tool_info = browser.discover("$.tools[?(@.name=='Bash')]") # Use identity-aware onboarding response = await browser.call({ "jsonrpc": "2.0", "method": "tools/call", "params": { "name": "onboarding", "arguments": { "identity": "MyProject", "instructions": "Remember to focus on code quality" } } }) ``` ## Sparse Mode In sparse mode (default), only 3 tools are initially visible: 1. **mcp_discover**: Explore available tools using JSONPath 2. **mcp_call**: Execute any tool by name 3. **onboarding**: Get/set identity-specific instructions All other tools (potentially hundreds) are hidden but fully accessible through these meta-tools. ## Design Principles 1. **Generic**: No tool-specific knowledge built into the browser 2. **Minimal**: Smallest possible API surface 3. **Efficient**: Optimized for minimal context usage 4. **Transparent**: Acts as a pass-through proxy with intelligent enhancements